Arockiaraj Micheal, Jeni Godlin J J, Radha S, Aziz Tariq, Al-Harbi Mitub
Department of Mathematics, Loyola College, Chennai, 600034, India.
School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, India.
Sci Rep. 2025 Jan 29;15(1):3639. doi: 10.1038/s41598-025-88044-x.
Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates. This study focuses on the selection of drugs used to treat lung cancer, including dacomitinib, selpercatinib, tepotinib, trametinib, sotorasib, etoposide, alectinib, paclitaxel, dabrafenib, entrectinib, crizotinib, ceritinib, lorlatinib, afatinib, pralsetinib, brigatinib, erlotinib, adagrasib, gefitinib, vinorelbine, gemcitabine, docetaxel, and pemetrexed. Using molecular structural measures such as degree, neighborhood degree sum, and modified reverse degree, we have developed QSPR models to predict physicochemical properties through the topological indices derived from these structural measures. We then conducted a comparative analysis, incorporating correlation analysis, to identify the model with the highest predictive accuracy.
定量结构-性质关系(QSPR)建模已成为药物化学和药物设计领域的关键工具,为理解化学结构与物理化学性质之间的相关性提供了一个预测框架。拓扑指数是从分子图中衍生出来的数学描述符,它捕捉结构特征和连通性,通过将化学结构与其物理化学性质和生物活性定量关联,在QSPR分析中发挥着关键作用。肺癌具有侵袭性和晚期诊断的特点,这常常限制了治疗选择,并对患者生存率产生重大影响。本研究重点关注用于治疗肺癌的药物选择,包括达可替尼、塞尔帕替尼、替泊替尼、曲美替尼、索托拉西布、依托泊苷、阿来替尼、紫杉醇、达拉非尼、恩曲替尼、克唑替尼、色瑞替尼、洛拉替尼、阿法替尼、普拉替尼、布加替尼、厄洛替尼、阿达格拉西布、吉非替尼、长春瑞滨、吉西他滨、多西他赛和培美曲塞。利用诸如度、邻域度和修正逆度等分子结构测量方法,我们通过从这些结构测量方法中导出的拓扑指数开发了QSPR模型来预测物理化学性质。然后,我们进行了一项比较分析,纳入相关性分析,以确定预测准确性最高的模型。