IEEE Trans Neural Netw Learn Syst. 2022 Jul;33(7):2801-2815. doi: 10.1109/TNNLS.2020.3045492. Epub 2022 Jul 6.
The further exploration of the neural mechanisms underlying the biological activities of the human brain depends on the development of large-scale spiking neural networks (SNNs) with different categories at different levels, as well as the corresponding computing platforms. Neuromorphic engineering provides approaches to high-performance biologically plausible computational paradigms inspired by neural systems. In this article, we present a biological-inspired cognitive supercomputing system (BiCoSS) that integrates multiple granules (GRs) of SNNs to realize a hybrid compatible neuromorphic platform. A scalable hierarchical heterogeneous multicore architecture is presented, and a synergistic routing scheme for hybrid neural information is proposed. The BiCoSS system can accommodate different levels of GRs and biological plausibility of SNN models in an efficient and scalable manner. Over four million neurons can be realized on BiCoSS with a power efficiency of 2.8k larger than the GPU platform, and the average latency of BiCoSS is 3.62 and 2.49 times higher than conventional architectures of digital neuromorphic systems. For the verification, BiCoSS is used to replicate various biological cognitive activities, including motor learning, action selection, context-dependent learning, and movement disorders. Comprehensively considering the programmability, biological plausibility, learning capability, computational power, and scalability, BiCoSS is shown to outperform the alternative state-of-the-art works for large-scale SNN, while its real-time computational capability enables a wide range of potential applications.
进一步探索人类大脑生物活动的神经机制,取决于不同类别、不同层次的大规模尖峰神经网络 (SNN) 的发展,以及相应的计算平台。神经形态工程为基于神经系统的高性能生物逼真计算范例提供了方法。本文提出了一种生物启发式认知超级计算系统 (BiCoSS),该系统集成了多个 SNN 的颗粒 (GR),以实现混合兼容的神经形态平台。提出了一种可扩展的分层异构多核架构,并提出了一种用于混合神经信息的协同路由方案。BiCoSS 系统可以以高效和可扩展的方式容纳不同级别的 GR 和 SNN 模型的生物逼真度。BiCoSS 上可以实现超过四百万个神经元,其功率效率比 GPU 平台高 2.8k,平均延迟比传统数字神经形态系统的架构高 3.62 倍和 2.49 倍。为了验证,BiCoSS 用于复制各种生物认知活动,包括运动学习、动作选择、上下文相关学习和运动障碍。综合考虑可编程性、生物逼真性、学习能力、计算能力和可扩展性,BiCoSS 被证明优于替代的大规模 SNN 最新技术水平,而其实时计算能力使其能够实现广泛的潜在应用。