Ma Yunxiao, Huang Jinming, Liu Chuan, Shi Meiyu
College of Engineering, Qufu Normal University, Rizhao, China.
Front Neurorobot. 2025 Jan 15;18:1502560. doi: 10.3389/fnbot.2024.1502560. eCollection 2024.
Brain-computer interfaces (BCIs) have garnered significant research attention, yet their complexity has hindered widespread adoption in daily life. Most current electroencephalography (EEG) systems rely on wet electrodes and numerous electrodes to enhance signal quality, making them impractical for everyday use. Portable and wearable devices offer a promising solution, but the limited number of electrodes in specific regions can lead to missing channels and reduced BCI performance. To overcome these challenges and enable better integration of BCI systems with external devices, this study developed an EEG signal acquisition platform (Gaitech BCI) based on the Robot Operating System (ROS) using a 10-channel dry electrode EEG device. Additionally, a multi-scale channel attention selection network based on the Squeeze-and-Excitation (SE) module (SEMSCS) is proposed to improve the classification performance of portable BCI devices with limited channels. Steady-state visual evoked potential (SSVEP) data were collected using the developed BCI system to evaluate both the system and network performance. Offline data from ten subjects were analyzed using within-subject and cross-subject experiments, along with ablation studies. The results demonstrated that the SEMSCS model achieved better classification performance than the comparative reference model, even with a limited number of channels. Additionally, the implementation of online experiments offers a rational solution for controlling external devices via BCI.
脑机接口(BCIs)已获得了大量的研究关注,但其复杂性阻碍了其在日常生活中的广泛应用。当前大多数脑电图(EEG)系统依赖湿电极和大量电极来提高信号质量,这使得它们在日常使用中不切实际。便携式和可穿戴设备提供了一个有前景的解决方案,但特定区域电极数量有限可能导致通道缺失和脑机接口性能下降。为了克服这些挑战并实现脑机接口系统与外部设备的更好集成,本研究基于机器人操作系统(ROS),使用10通道干电极脑电图设备开发了一个脑电图信号采集平台(Gaitech BCI)。此外,还提出了一种基于挤压激励(SE)模块的多尺度通道注意力选择网络(SEMSCS),以提高通道有限的便携式脑机接口设备的分类性能。使用所开发的脑机接口系统收集稳态视觉诱发电位(SSVEP)数据,以评估系统和网络性能。使用受试者内和受试者间实验以及消融研究对来自10名受试者的离线数据进行了分析。结果表明,即使通道数量有限,SEMSCS模型也比比较参考模型具有更好的分类性能。此外,在线实验的实施为通过脑机接口控制外部设备提供了一个合理的解决方案。