Suppr超能文献

正常生理条件下轴突髓鞘单位的统计稳健模型及其在疾病状态中的应用

A Statistically-Robust Model of the Axomyelin Unit under Normal Physiologic Conditions with Application to Disease States.

作者信息

Gow Alexander, Dupree Jeffrey L, Feinstein Douglas L, Boullerne Anne

机构信息

Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.

Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA.

出版信息

ASN Neuro. 2025;17(1):2447336. doi: 10.1080/17590914.2024.2447336. Epub 2025 Jan 30.

Abstract

Despite tremendous progress in characterizing the myriad cellular structures in the nervous system, a full appreciation of the interdependent and intricate interactions between these structures is as yet unfulfilled. Indeed, few more so than the interaction between the myelin internode and its ensheathed axon. More than a half-century after the ultrastructural characterization of this axomyelin unit, we lack a reliable understanding of the physiological properties, the significance and consequence of pathobiological processes, and the means to gauge success or failure of interventions designed to mitigate disease. Herein, we highlight shortcomings in the most common statistical procedures used to characterize the myelin ratio, with particular emphasis on the underlying principles of simple linear regression. These shortcomings lead to insensitive detection and/or ambiguous interpretation of normal physiology, disease mechanisms and remedial methodologies. To address these problems, we syndicate insights from early seminal myelin studies and use a statistical model of the axomyelin unit that is established in Gow (2025). Herein, we develop and demonstrate a statistically-robust analysis pipeline with which to examine and interpret axomyelin physiology and pathobiology in two disease states, experimental autoimmune encephalomyelitis and the mouse model of leukodystrophy. On a cautionary note, our pipeline is a relatively simple and streamlined approach that is not necessarily a panacea for all ratio analyses. Rather, it approximates a minimum effort needed to elucidate departures from normal physiology and to determine if more comprehensive studies may lead to deeper insights.

摘要

尽管在描绘神经系统中无数细胞结构方面取得了巨大进展,但对这些结构之间相互依存且错综复杂的相互作用的全面理解仍未实现。事实上,髓鞘节间段与其包裹的轴突之间的相互作用更是如此。在对这个轴突髓鞘单位进行超微结构表征半个多世纪后,我们仍缺乏对其生理特性、病理生物学过程的意义和后果以及衡量旨在减轻疾病的干预措施成败方法的可靠认识。在此,我们强调了用于表征髓鞘比率的最常见统计程序中的缺点,特别强调简单线性回归的基本原理。这些缺点导致对正常生理学、疾病机制和补救方法的检测不敏感和/或解释模糊。为了解决这些问题,我们综合了早期开创性髓鞘研究的见解,并使用了在 Gow(2025 年)中建立的轴突髓鞘单位统计模型。在此,我们开发并展示了一种统计稳健的分析流程,用于检查和解释两种疾病状态下的轴突髓鞘生理学和病理生物学,即实验性自身免疫性脑脊髓炎和脑白质营养不良小鼠模型。需要提醒的是,我们的流程是一种相对简单且简化的方法,不一定是所有比率分析的万灵药。相反,它近似于阐明与正常生理学偏差并确定更全面的研究是否可能带来更深入见解所需的最小努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c4/11974466/4cadb7bf44b8/TASN_A_2447336_F0001_B.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验