Suppr超能文献

浅层外侧与深层外侧内嗅皮层:环境空间、自我中心空间、速度、边界和角落的编码。

Superficial-layer versus deep-layer lateral entorhinal cortex: Coding of allocentric space, egocentric space, speed, boundaries, and corners.

机构信息

Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.

出版信息

Hippocampus. 2023 May;33(5):448-464. doi: 10.1002/hipo.23528. Epub 2023 Mar 25.

Abstract

Entorhinal cortex is the major gateway between the neocortex and the hippocampus and thus plays an essential role in subserving episodic memory and spatial navigation. It can be divided into the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC), which are commonly theorized to be critical for spatial (context) and non-spatial (content) inputs, respectively. Consistent with this theory, LEC neurons are found to carry little information about allocentric self-location, even in cue-rich environments, but they exhibit egocentric spatial information about external items in the environment. The superficial and deep layers of LEC are believed to mediate the input to and output from the hippocampus, respectively. As earlier studies mainly examined the spatial firing properties of superficial-layer LEC neurons, here we characterized the deep-layer LEC neurons and made direct comparisons with their superficial counterparts in single unit recordings from behaving rats. Because deep-layer LEC cells received inputs from hippocampal regions, which have strong selectivity for self-location, we hypothesized that deep-layer LEC neurons would be more informative about allocentric position than superficial-layer LEC neurons. We found that deep-layer LEC cells showed only slightly more allocentric spatial information and higher spatial consistency than superficial-layer LEC cells. Egocentric coding properties were comparable between these two subregions. In addition, LEC neurons demonstrated preferential firing at lower speeds, as well as at the boundary or corners of the environment. These results suggest that allocentric spatial outputs from the hippocampus are transformed in deep-layer LEC into the egocentric coding dimensions of LEC, rather than maintaining the allocentric spatial tuning of the CA1 place fields.

摘要

内嗅皮层是新皮层和海马体之间的主要门户,因此在服务于情景记忆和空间导航方面起着至关重要的作用。它可以分为内侧内嗅皮层(MEC)和外侧内嗅皮层(LEC),通常被认为分别对空间(上下文)和非空间(内容)输入至关重要。与该理论一致,LEC 神经元被发现对自我定位的无位置信息几乎没有携带,即使在提示丰富的环境中,它们也表现出关于环境中外部项目的自我中心空间信息。LEC 的浅层和深层被认为分别介导海马体的输入和输出。由于早期的研究主要检查了浅层 LEC 神经元的空间放电特性,因此我们在这里对深层 LEC 神经元进行了特征描述,并在行为大鼠的单细胞记录中与它们的浅层对应物进行了直接比较。由于深层 LEC 细胞接收来自海马区的输入,海马区对自我位置具有很强的选择性,因此我们假设深层 LEC 神经元对无位置信息的了解比浅层 LEC 神经元更多。我们发现,深层 LEC 细胞仅显示出稍多的无位置空间信息和更高的空间一致性,而浅层 LEC 细胞则稍高。这两个子区域的自我中心编码特性相当。此外,LEC 神经元在较低速度、环境边界或角落处表现出优先放电。这些结果表明,海马体的无位置空间输出在深层 LEC 中转化为 LEC 的自我中心编码维度,而不是保持 CA1 位置场的无位置空间调谐。

相似文献

本文引用的文献

4
A theory of geometry representations for spatial navigation.空间导航的几何表示理论。
Prog Neurobiol. 2022 Apr;211:102228. doi: 10.1016/j.pneurobio.2022.102228. Epub 2022 Jan 25.
6
Spatial modulation of hippocampal activity in freely moving macaques.在自由活动的猕猴中,海马体活动的空间调制。
Neuron. 2021 Nov 3;109(21):3521-3534.e6. doi: 10.1016/j.neuron.2021.09.032. Epub 2021 Oct 12.
9
A neural code for egocentric spatial maps in the human medial temporal lobe.人类内侧颞叶中自我中心空间图的神经编码。
Neuron. 2021 Sep 1;109(17):2781-2796.e10. doi: 10.1016/j.neuron.2021.06.019. Epub 2021 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验