Álvarez-Barrientos Felipe, Salinas-Camus Mariana, Pezzuto Simone, Sahli Costabal Francisco
Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
Intelligent Sustainable Prognostics Group, Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands.
Med Image Anal. 2025 Apr;101:103460. doi: 10.1016/j.media.2025.103460. Epub 2025 Jan 21.
The identification of the Purkinje conduction system in the heart is a challenging task, yet essential for a correct definition of cardiac digital twins for precision cardiology. Here, we propose a probabilistic approach for identifying the Purkinje network from non-invasive clinical data such as the standard electrocardiogram (ECG). We use cardiac imaging to build an anatomically accurate model of the ventricles; we algorithmically generate a rule-based Purkinje network tailored to the anatomy; we simulate physiological electrocardiograms with a fast model; we identify the geometrical and electrical parameters of the Purkinje-ECG model with Bayesian optimization and approximate Bayesian computation. The proposed approach is inherently probabilistic and generates a population of plausible Purkinje networks, all fitting the ECG within a given tolerance. In this way, we can estimate the uncertainty of the parameters, thus providing reliable predictions. We test our methodology in physiological and pathological scenarios, showing that we are able to accurately recover the ECG with our model. We propagate the uncertainty in the Purkinje network parameters in a simulation of conduction system pacing therapy. Our methodology is a step forward in creation of digital twins from non-invasive data in precision medicine. An open source implementation can be found at http://github.com/fsahli/purkinje-learning.
识别心脏中的浦肯野传导系统是一项具有挑战性的任务,但对于精确心脏病学中正确定义心脏数字孪生体至关重要。在此,我们提出一种概率方法,用于从诸如标准心电图(ECG)等非侵入性临床数据中识别浦肯野网络。我们利用心脏成像构建心室的解剖学精确模型;我们通过算法生成一个针对该解剖结构量身定制的基于规则的浦肯野网络;我们使用快速模型模拟生理心电图;我们通过贝叶斯优化和近似贝叶斯计算识别浦肯野 - 心电图模型的几何和电学参数。所提出的方法本质上是概率性的,并生成一系列合理的浦肯野网络,所有这些网络都能在给定容差范围内拟合心电图。通过这种方式,我们可以估计参数的不确定性,从而提供可靠的预测。我们在生理和病理场景中测试我们的方法,表明我们能够用我们的模型准确恢复心电图。我们在传导系统起搏治疗模拟中传播浦肯野网络参数的不确定性。我们的方法在从精准医学中的非侵入性数据创建数字孪生体方面向前迈进了一步。可在http://github.com/fsahli/purkinje-learning找到开源实现。