Camps Julia, Wang Zhinuo Jenny, Doste Ruben, Berg Lucas Arantes, Holmes Maxx, Lawson Brodie, Tomek Jakub, Burrage Kevin, Bueno-Orovio Alfonso, Rodriguez Blanca
University of Oxford, Oxford, United Kingdom.
University of Oxford, Oxford, United Kingdom.
Med Image Anal. 2025 Feb;100:103361. doi: 10.1016/j.media.2024.103361. Epub 2024 Oct 18.
Cardiac digital twins are computational tools capturing key functional and anatomical characteristics of patient hearts for investigating disease phenotypes and predicting responses to therapy. When paired with large-scale computational resources and large clinical datasets, digital twin technology can enable virtual clinical trials on virtual cohorts to fast-track therapy development. Here, we present an open-source automated pipeline for personalising ventricular electrophysiological function based on routinely acquired magnetic resonance imaging (MRI) data and the standard 12-lead electrocardiogram (ECG). Using MRI-based anatomical models, a sequential Monte-Carlo approximate Bayesian computational inference method is extended to infer electrical activation and repolarisation characteristics from the ECG. Fast simulations are conducted with a reaction-Eikonal model, including the Purkinje network and biophysically-detailed subcellular ionic current dynamics for repolarisation. For each patient, parameter uncertainty is represented by inferring an envelope of plausible ventricular models rather than a single one, which means that parameter uncertainty can be propagated to therapy evaluation. Furthermore, we have developed techniques for translating from reaction-Eikonal to monodomain simulations, which allows more realistic simulations of cardiac electrophysiology. The pipeline is demonstrated in three healthy subjects, where our inferred pseudo-diffusion reaction-Eikonal models reproduced the patient's ECG with a median Pearson's correlation coefficient of 0.9, and then translated to monodomain simulations with a median correlation coefficient of 0.84 across all subjects. We then demonstrate our digital twins for virtual evaluation of Dofetilide with uncertainty quantification. These evaluations using our cardiac digital twins reproduced dose-dependent QTc and T peak to T end prolongations that are in keeping with large population drug response data. The methodologies for cardiac digital twinning presented here are a step towards personalised virtual therapy testing and can be scaled to generate virtual populations for clinical trials to fast-track therapy evaluation. The tools developed for this paper are open-source, documented, and made publicly available.
心脏数字孪生是一种计算工具,可捕捉患者心脏的关键功能和解剖特征,用于研究疾病表型和预测治疗反应。当与大规模计算资源和大型临床数据集相结合时,数字孪生技术能够在虚拟队列上进行虚拟临床试验,以加速治疗开发。在此,我们展示了一个开源自动化流程,可基于常规获取的磁共振成像(MRI)数据和标准12导联心电图(ECG)对心室电生理功能进行个性化。利用基于MRI的解剖模型,扩展了一种序贯蒙特卡罗近似贝叶斯计算推理方法,以从ECG推断电激活和复极特征。使用反应-艾克纳模型进行快速模拟,该模型包括浦肯野网络和用于复极的生物物理详细亚细胞离子电流动力学。对于每位患者,通过推断合理的心室模型包络而非单个模型来表示参数不确定性,这意味着参数不确定性可传播至治疗评估。此外,我们还开发了从反应-艾克纳模拟转换为单域模拟的技术,从而能够对心脏电生理进行更逼真的模拟。该流程在三名健康受试者中得到了验证,我们推断的伪扩散反应-艾克纳模型重现了患者的ECG,中位数皮尔逊相关系数为0.9,然后转换为单域模拟,所有受试者的中位数相关系数为0.84。然后,我们展示了用于多非利特虚拟评估且带有不确定性量化的数字孪生。使用我们的心脏数字孪生进行的这些评估重现了剂量依赖性QTc和T峰到T末延长,与大量人群药物反应数据一致。本文介绍的心脏数字孪生方法是迈向个性化虚拟治疗测试的一步,并且可以扩展以生成用于临床试验的虚拟人群,以加速治疗评估。为本文开发的工具是开源的、有文档记录的,并已公开提供。