Suppr超能文献

利用逼真的浦肯野网络将人心室激活序列进行数字孪生,以匹配临床12导联心电图和磁共振成像,用于计算机模拟临床试验。

Digital twinning of the human ventricular activation sequence to Clinical 12-lead ECGs and magnetic resonance imaging using realistic Purkinje networks for in silico clinical trials.

作者信息

Camps Julia, Berg Lucas Arantes, Wang Zhinuo Jenny, Sebastian Rafael, Riebel Leto Luana, Doste Ruben, Zhou Xin, Sachetto Rafael, Coleman James, Lawson Brodie, Grau Vicente, Burrage Kevin, Bueno-Orovio Alfonso, Weber Dos Santos Rodrigo, Rodriguez Blanca

机构信息

University of Oxford, Oxford, United Kingdom.

University of Oxford, Oxford, United Kingdom.

出版信息

Med Image Anal. 2024 May;94:103108. doi: 10.1016/j.media.2024.103108. Epub 2024 Feb 28.

Abstract

Cardiac in silico clinical trials can virtually assess the safety and efficacy of therapies using human-based modelling and simulation. These technologies can provide mechanistic explanations for clinically observed pathological behaviour. Designing virtual cohorts for in silico trials requires exploiting clinical data to capture the physiological variability in the human population. The clinical characterisation of ventricular activation and the Purkinje network is challenging, especially non-invasively. Our study aims to present a novel digital twinning pipeline that can efficiently generate and integrate Purkinje networks into human multiscale biventricular models based on subject-specific clinical 12-lead electrocardiogram and magnetic resonance recordings. Essential novel features of the pipeline are the human-based Purkinje network generation method, personalisation considering ECG R wave progression as well as QRS morphology, and translation from reduced-order Eikonal models to equivalent biophysically-detailed monodomain ones. We demonstrate ECG simulations in line with clinical data with clinical image-based multiscale models with Purkinje in four control subjects and two hypertrophic cardiomyopathy patients (simulated and clinical QRS complexes with Pearson's correlation coefficients > 0.7). Our methods also considered possible differences in the density of Purkinje myocardial junctions in the Eikonal-based inference as regional conduction velocities. These differences translated into regional coupling effects between Purkinje and myocardial models in the monodomain formulation. In summary, we demonstrate a digital twin pipeline enabling simulations yielding clinically consistent ECGs with clinical CMR image-based biventricular multiscale models, including personalised Purkinje in healthy and cardiac disease conditions.

摘要

心脏计算机模拟临床试验可以利用基于人体的建模和模拟,虚拟评估治疗方法的安全性和有效性。这些技术可以为临床观察到的病理行为提供机理解释。为计算机模拟试验设计虚拟队列需要利用临床数据来捕捉人群中的生理变异性。心室激活和浦肯野网络的临床特征描述具有挑战性,尤其是非侵入性的。我们的研究旨在提出一种新颖的数字孪生管道,该管道可以基于特定个体的临床12导联心电图和磁共振记录,有效地生成浦肯野网络并将其整合到人体多尺度双心室模型中。该管道的重要新颖特征包括基于人体的浦肯野网络生成方法、考虑心电图R波进展以及QRS形态的个性化,以及从降阶的程函模型转换为等效的生物物理详细单域模型。我们在四名对照受试者和两名肥厚型心肌病患者中,用基于临床图像的带有浦肯野网络的多尺度模型,展示了与临床数据一致的心电图模拟(模拟和临床QRS复合波的皮尔逊相关系数>0.7)。我们的方法还在基于程函的推断中考虑了浦肯野-心肌连接密度的可能差异作为区域传导速度。这些差异在单域公式中转化为浦肯野和心肌模型之间的区域耦合效应。总之,我们展示了一种数字孪生管道,能够通过基于临床CMR图像的双心室多尺度模型进行模拟,生成与临床一致的心电图,包括在健康和心脏疾病状态下的个性化浦肯野网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验