Suppr超能文献

在人类心脏中生成浦肯野网络。

Generating Purkinje networks in the human heart.

作者信息

Sahli Costabal Francisco, Hurtado Daniel E, Kuhl Ellen

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.

Department of Structural and Geotechnical Engineering and Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.

出版信息

J Biomech. 2016 Aug 16;49(12):2455-65. doi: 10.1016/j.jbiomech.2015.12.025. Epub 2015 Dec 22.

Abstract

The Purkinje network is an integral part of the excitation system in the human heart. Yet, to date, there is no in vivo imaging technique to accurately reconstruct its geometry and structure. Computational modeling of the Purkinje network is increasingly recognized as an alternative strategy to visualize, simulate, and understand the role of the Purkinje system. However, most computational models either have to be generated manually, or fail to smoothly cover the irregular surfaces inside the left and right ventricles. Here we present a new algorithm to reliably create robust Purkinje networks within the human heart. We made the source code of this algorithm freely available online. Using Monte Carlo simulations, we demonstrate that the fractal tree algorithm with our new projection method generates denser and more compact Purkinje networks than previous approaches on irregular surfaces. Under similar conditions, our algorithm generates a network with 1219±61 branches, three times more than a conventional algorithm with 419±107 branches. With a coverage of 11±3mm, the surface density of our new Purkije network is twice as dense as the conventional network with 22±7mm. To demonstrate the importance of a dense Purkinje network in cardiac electrophysiology, we simulated three cases of excitation: with our new Purkinje network, with left-sided Purkinje network, and without Purkinje network. Simulations with our new Purkinje network predicted more realistic activation sequences and activation times than simulations without. Six-lead electrocardiograms of the three case studies agreed with the clinical electrocardiograms under physiological conditions, under pathological conditions of right bundle branch block, and under pathological conditions of trifascicular block. Taken together, our results underpin the importance of the Purkinje network in realistic human heart simulations. Human heart modeling has the potential to support the design of personalized strategies for single- or bi-ventricular pacing, radiofrequency ablation, and cardiac defibrillation with the common goal to restore a normal heart rhythm.

摘要

浦肯野网络是人体心脏兴奋系统的一个组成部分。然而,迄今为止,尚无体内成像技术能够准确重建其几何形状和结构。浦肯野网络的计算建模日益被视为一种可视化、模拟和理解浦肯野系统作用的替代策略。然而,大多数计算模型要么必须手动生成,要么无法平滑覆盖左心室和右心室内的不规则表面。在此,我们提出一种新算法,能够在人体心脏内可靠地创建健壮的浦肯野网络。我们将该算法的源代码免费发布在网上。通过蒙特卡洛模拟,我们证明,采用我们新的投影方法的分形树算法,在不规则表面上生成的浦肯野网络比以前的方法更密集、更紧凑。在相似条件下,我们的算法生成的网络有1219±61个分支,是传统算法(419±107个分支)的三倍。我们新的浦肯野网络的表面密度为11±3毫米,是传统网络(22±7毫米)的两倍。为证明密集的浦肯野网络在心脏电生理学中的重要性,我们模拟了三种兴奋情况:使用我们新的浦肯野网络、使用左侧浦肯野网络以及不使用浦肯野网络。使用我们新的浦肯野网络进行的模拟预测的激活序列和激活时间比不使用该网络的模拟更符合实际情况。三个案例研究的六导联心电图在生理条件下、右束支传导阻滞的病理条件下以及三分支传导阻滞的病理条件下均与临床心电图一致。综上所述,我们的结果证实了浦肯野网络在真实人体心脏模拟中的重要性。人体心脏建模有潜力支持单心室或双心室起搏、射频消融和心脏除颤等个性化策略的设计,共同目标是恢复正常心律。

相似文献

1
Generating Purkinje networks in the human heart.在人类心脏中生成浦肯野网络。
J Biomech. 2016 Aug 16;49(12):2455-65. doi: 10.1016/j.jbiomech.2015.12.025. Epub 2015 Dec 22.
3
A procedural method for modeling the purkinje fibers of the heart.一种用于模拟心脏浦肯野纤维的程序方法。
J Physiol Sci. 2008 Dec;58(7):481-6. doi: 10.2170/physiolsci.RP003208. Epub 2008 Oct 18.

引用本文的文献

4
Digital twinning of cardiac electrophysiology for congenital heart disease.心脏电生理学的数字孪生用于先天性心脏病。
J R Soc Interface. 2024 Jun;21(215):20230729. doi: 10.1098/rsif.2023.0729. Epub 2024 Jun 5.
6
Branched Latent Neural Maps.分支潜在神经映射
Comput Methods Appl Mech Eng. 2024 Jan;418(Pt A). doi: 10.1016/j.cma.2023.116499. Epub 2023 Oct 9.
7
Computational Modelling Enabling In Silico Trials for Cardiac Physiologic Pacing.计算模型助力心脏生理起搏的计算机模拟试验。
J Cardiovasc Transl Res. 2024 Jun;17(3):685-694. doi: 10.1007/s12265-023-10453-y. Epub 2023 Oct 23.
10
Effects of cardiac growth on electrical dyssynchrony in the single ventricle patient.心脏生长对单心室患者电不同步的影响。
Comput Methods Biomech Biomed Engin. 2024 Jun;27(8):1011-1027. doi: 10.1080/10255842.2023.2222203. Epub 2023 Jun 14.

本文引用的文献

1
Modeling Pathologies of Diastolic and Systolic Heart Failure.舒张性和收缩性心力衰竭的病理建模
Ann Biomed Eng. 2016 Jan;44(1):112-27. doi: 10.1007/s10439-015-1351-2. Epub 2015 Jun 5.
8
A fully implicit finite element method for bidomain models of cardiac electromechanics.一种用于心脏机电双域模型的全隐式有限元方法。
Comput Methods Appl Mech Eng. 2013 Jan 1;253:323-336. doi: 10.1016/j.cma.2012.07.004. Epub 2012 Jul 24.
10
Characterization and modeling of the peripheral cardiac conduction system.心脏周围传导系统的特征与建模。
IEEE Trans Med Imaging. 2013 Jan;32(1):45-55. doi: 10.1109/TMI.2012.2221474. Epub 2012 Oct 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验