Suppr超能文献

贯穿时间的天然产物分析:从过去的成就到未来的前景

Natural Products Analysis Through Time: From Past Achievements to Future Prospects.

作者信息

Verpoorte Robert, Kim Hye Kyong

机构信息

Natural Products Lab, Institute of Biology, Leiden University, Leiden, The Netherlands.

Fytagoras BV, Leiden, The Netherlands.

出版信息

Methods Mol Biol. 2025;2895:3-13. doi: 10.1007/978-1-0716-4350-1_1.

Abstract

This introductory chapter traces the evolution of (bio)chemical assays, emphasizing the critical role of robust protocols in ensuring reproducibility-a fundamental aspect of scientific research. With the advent of systems biology, the need for standardized methods has intensified, particularly for integrating vast datasets in open-access formats. The historical progression from basic plant morphology to advanced chromatographic and spectroscopic techniques in phytochemistry highlights the necessity for precise, reproducible protocols.As metabolomics advances, there is a renewed focus on targeted approaches, shifting from broad, untargeted analyses to more specific, hypothesis-driven studies. This chapter also explores the future of analytical techniques, including cellomics and real-time metabolic flux measurements, which offer new insights into dynamic biochemical processes.Ultimately, this introduction underscores the importance of innovation in developing new methods that address current scientific challenges, particularly in pharmacognosy and analytical phytochemistry. The chapter sets the stage for the broader discussion on the necessity of well-designed protocols that facilitate effective data sharing and collaboration across research disciplines.

摘要

本章引言追溯了(生物)化学分析方法的演变,强调了可靠方案在确保可重复性方面的关键作用,而可重复性是科学研究的一个基本方面。随着系统生物学的出现,对标准化方法的需求日益增加,特别是对于以开放获取格式整合大量数据集而言。从植物化学中从基本植物形态学到先进的色谱和光谱技术的历史发展,凸显了精确、可重复方案的必要性。随着代谢组学的发展,人们重新关注靶向方法,从广泛的非靶向分析转向更具体的、由假设驱动的研究。本章还探讨了分析技术的未来,包括细胞组学和实时代谢通量测量,这些技术为动态生化过程提供了新的见解。最终,本引言强调了创新在开发应对当前科学挑战的新方法中的重要性,特别是在生药学和分析植物化学领域。本章为更广泛地讨论精心设计的方案的必要性奠定了基础,这些方案有助于跨研究学科进行有效的数据共享和合作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验