Suppr超能文献

使用时空堆叠机器学习模型模拟白纹伊蚊种群的季节动态。

Modelling the seasonal dynamics of Aedes albopictus populations using a spatio-temporal stacked machine learning model.

作者信息

Da Re Daniele, Marini Giovanni, Bonannella Carmelo, Laurini Fabrizio, Manica Mattia, Anicic Nikoleta, Albieri Alessandro, Angelini Paola, Arnoldi Daniele, Bertola Federica, Caputo Beniamino, De Liberato Claudio, Della Torre Alessandra, Flacio Eleonora, Franceschini Alessandra, Gradoni Francesco, Kadriaj Përparim, Lencioni Valeria, Del Lesto Irene, Russa Francesco La, Lia Riccardo Paolo, Montarsi Fabrizio, Otranto Domenico, L'Ambert Gregory, Rizzoli Annapaola, Rombolà Pasquale, Romiti Federico, Stancher Gionata, Torina Alessandra, Velo Enkelejda, Virgillito Chiara, Zandonai Fabiana, Rosà Roberto

机构信息

Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy.

Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.

出版信息

Sci Rep. 2025 Jan 30;15(1):3750. doi: 10.1038/s41598-025-87554-y.

Abstract

Various modelling techniques are available to understand the temporal and spatial variations of the phenology of species. Scientists often rely on correlative models, which establish a statistical relationship between a response variable (such as species abundance or presence-absence) and a set of predominantly abiotic covariates. The choice of the modeling approach, i.e., the algorithm, is itself a significant source of variability, as different algorithms applied to the same dataset can yield disparate outcomes. This inter-model variability has led to the adoption of ensemble modelling techniques, among which stacked generalisation, which has recently demonstrated its capacity to produce robust results. Stacked ensemble modelling incorporates predictions from multiple base learners or models as inputs for a meta-learner. The meta-learner, in turn, assimilates these predictions and generates a final prediction by combining the information from all the base learners. In our study, we utilized a recently published dataset documenting egg abundance observations of Aedes albopictus collected using ovitraps. and a set of environmental predictors to forecast the weekly median number of mosquito eggs using a stacked machine learning model. This approach enabled us to (i) unearth the seasonal egg-laying dynamics of Ae. albopictus for 12 years; (ii) generate spatio-temporal explicit forecasts of mosquito egg abundance in regions not covered by conventional monitoring initiatives. Our work establishes a robust methodological foundation for forecasting the spatio-temporal abundance of Ae. albopictus, offering a flexible framework that can be tailored to meet specific public health needs related to this species.

摘要

有多种建模技术可用于了解物种物候的时空变化。科学家们通常依赖相关模型,这些模型在响应变量(如物种丰度或存在与否)与一组主要的非生物协变量之间建立统计关系。建模方法的选择,即算法本身,是变异性的一个重要来源,因为应用于同一数据集的不同算法可能会产生不同的结果。这种模型间的变异性导致了集成建模技术的采用,其中堆叠泛化最近已证明其能够产生稳健的结果。堆叠集成建模将来自多个基础学习器或模型的预测作为元学习器的输入。反过来,元学习器会吸收这些预测,并通过组合所有基础学习器的信息来生成最终预测。在我们的研究中,我们利用了一个最近发表的数据集,该数据集记录了使用诱蚊产卵器收集的白纹伊蚊卵丰度观测数据,以及一组环境预测因子,使用堆叠机器学习模型来预测蚊卵的每周中位数数量。这种方法使我们能够:(i)揭示白纹伊蚊12年的季节性产卵动态;(ii)在传统监测举措未覆盖的地区生成蚊卵丰度的时空明确预测。我们的工作为预测白纹伊蚊的时空丰度建立了一个稳健的方法基础,提供了一个灵活的框架,可根据与该物种相关的特定公共卫生需求进行定制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b88c/11782657/58d752d1b9af/41598_2025_87554_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验