Kim Dae-Yeong, Inagaki Yoshinobu, Yamakawa Tsukasa, Lu Bang, Sato Yoshiaki, Shirai Naoki, Furukawa Shinya, Kim Hyun-Ha, Takakusagi Satoru, Sasaki Koichi, Nozaki Tomohiro
Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
Division of Applied Quantum Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan.
JACS Au. 2024 Nov 19;5(1):169-177. doi: 10.1021/jacsau.4c00857. eCollection 2025 Jan 27.
Activating H molecules into atomic hydrogen and utilizing their intrinsic chemical reactivity are important processes in catalytic hydrogenation. Here, we have developed a plasma-catalyst combined system that directly provides atomic hydrogen from the gas phase to the catalytic reaction to utilize the high energy and translational freedom of atomic hydrogen. In this system, we show that the temperature of CO methanation over Ni/AlO can be dramatically lower compared to thermal catalysis. Using a detailed mechanistic study with kinetic studies, laser plasma diagnostics, plasma surface characterization, and theoretical calculations, we revealed that plasma-derived atomic hydrogen (PDAH) plays a crucial role in reaction promotion. In particular, PDAH effectively lowers the energy barrier of bidentate formate hydrogenation by translating from the Langmuir-Hinshelwood to the Eley-Rideal-type reaction.
将H分子激活为原子氢并利用其固有的化学反应性是催化加氢过程中的重要步骤。在此,我们开发了一种等离子体-催化剂组合系统,该系统可直接从气相向催化反应提供原子氢,以利用原子氢的高能量和平动自由度。在该系统中,我们发现与热催化相比,Ni/AlO上CO甲烷化的温度可显著降低。通过结合动力学研究、激光等离子体诊断、等离子体表面表征和理论计算进行详细的机理研究,我们揭示了等离子体衍生的原子氢(PDAH)在促进反应中起着关键作用。特别是,PDAH通过从朗缪尔-欣谢尔伍德型反应转变为埃利-里德耳型反应,有效地降低了双齿甲酸加氢的能垒。