Pourashraf Shirin, Cates Joshua W, Levin Craig S
Department of Radiology, Stanford University, Stanford, California, USA.
Applied Nuclear Physics Program, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
Med Phys. 2025 Jun;52(6):4769-4774. doi: 10.1002/mp.17643. Epub 2025 Jan 29.
Developing time-of-flight positron emission tomography/magnetic resonance imaging (TOF-PET/MRI) detectors that exploit prompt Cherenkov photons from bismuth germanate (BGO) crystals for estimating 511 keV photon arrival time.
To present a low-noise, high-speed electronic readout circuit design for BGO-based TOF-PET detectors that achieves enhanced coincidence time resolution (CTR) in presence of a strong magnetic field.
The CTR of a BGO-based TOF-PET test detector employing a high-speed, low-noise electronic readout chain was evaluated in a strong magnetic field produced by a permanent magnet placed directly on top of the circuit. For these experiments, which exploit Cherenkov radiation for precise measurement of annihilation photon time arrival time difference, a point source of Na was positioned between a pair of 3 × 3 × 15 mm polished BGO crystals wrapped in Teflon tape and optically coupled to 3 × 3 mm ultra-violet (UV)-sensitive silicon photomultipliers (SiPMs).
By incorporating both Cherenkov (prompt) and standard (slow) luminescence components, 283 ± 8 ps and 275 ± 10 ps full-width-half-maximum (FWHM) CTR were achieved without and with the permanent magnet present, respectfully. These values improved to 236 ± 4 ps and 216 ± 17 ps FWHM when only the Cherenkov components of the timing signal (events with the fastest rise time) were considered.
Results indicate we have designed a high-performance readout circuit that achieves significantly the same CTR in BGO with or without a strong magnetic field present. This further demonstrates that UV SiPMs can effectively operate in a strong magnetic field while remaining highly advantageous for detecting Cherenkov radiation, thus highlighting their potential to be used in BGO-based TOF-PET/MRI scanners.
开发飞行时间正电子发射断层扫描/磁共振成像(TOF-PET/MRI)探测器,利用锗酸铋(BGO)晶体产生的瞬发切伦科夫光子来估计511 keV光子的到达时间。
提出一种基于BGO的TOF-PET探测器的低噪声、高速电子读出电路设计,该设计在强磁场存在的情况下实现更高的符合时间分辨率(CTR)。
在直接放置在电路顶部的永磁体产生的强磁场中,评估采用高速、低噪声电子读出链的基于BGO的TOF-PET测试探测器的CTR。对于这些利用切伦科夫辐射精确测量湮灭光子到达时间差的实验,将一个钠点源放置在一对用特氟龙胶带包裹并与3×3 mm紫外(UV)敏感硅光电倍增管(SiPM)光耦合的3×3×15 mm抛光BGO晶体之间。
通过结合切伦科夫(瞬发)和标准(慢)发光成分,在不存在和存在永磁体的情况下,分别实现了283±8 ps和275±10 ps的半高全宽(FWHM)CTR。当仅考虑定时信号的切伦科夫成分(上升时间最快的事件)时,这些值分别提高到236±4 ps和216±17 ps FWHM。
结果表明,我们设计了一种高性能读出电路,在存在或不存在强磁场的情况下,在BGO中都能显著实现相同的CTR。这进一步证明了UV SiPM在强磁场中能够有效工作,同时在检测切伦科夫辐射方面仍具有高度优势,从而突出了它们在基于BGO的TOF-PET/MRI扫描仪中的应用潜力。