Suppr超能文献

基于盲扫超声的集成 AI 工具估算胎龄的诊断准确性。

Diagnostic Accuracy of an Integrated AI Tool to Estimate Gestational Age From Blind Ultrasound Sweeps.

机构信息

Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill.

Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill.

出版信息

JAMA. 2024 Aug 27;332(8):649-657. doi: 10.1001/jama.2024.10770.

Abstract

IMPORTANCE

Accurate assessment of gestational age (GA) is essential to good pregnancy care but often requires ultrasonography, which may not be available in low-resource settings. This study developed a deep learning artificial intelligence (AI) model to estimate GA from blind ultrasonography sweeps and incorporated it into the software of a low-cost, battery-powered device.

OBJECTIVE

To evaluate GA estimation accuracy of an AI-enabled ultrasonography tool when used by novice users with no prior training in sonography.

DESIGN, SETTING, AND PARTICIPANTS: This prospective diagnostic accuracy study enrolled 400 individuals with viable, single, nonanomalous, first-trimester pregnancies in Lusaka, Zambia, and Chapel Hill, North Carolina. Credentialed sonographers established the "ground truth" GA via transvaginal crown-rump length measurement. At random follow-up visits throughout gestation, including a primary evaluation window from 14 0/7 weeks' to 27 6/7 weeks' gestation, novice users obtained blind sweeps of the maternal abdomen using the AI-enabled device (index test) and credentialed sonographers performed fetal biometry with a high-specification machine (study standard).

MAIN OUTCOMES AND MEASURES

The primary outcome was the mean absolute error (MAE) of the index test and study standard, which was calculated by comparing each method's estimate to the previously established GA and considered equivalent if the difference fell within a prespecified margin of ±2 days.

RESULTS

In the primary evaluation window, the AI-enabled device met criteria for equivalence to the study standard, with an MAE (SE) of 3.2 (0.1) days vs 3.0 (0.1) days (difference, 0.2 days [95% CI, -0.1 to 0.5]). Additionally, the percentage of assessments within 7 days of the ground truth GA was comparable (90.7% for the index test vs 92.5% for the study standard). Performance was consistent in prespecified subgroups, including the Zambia and North Carolina cohorts and those with high body mass index.

CONCLUSIONS AND RELEVANCE

Between 14 and 27 weeks' gestation, novice users with no prior training in ultrasonography estimated GA as accurately with the low-cost, point-of-care AI tool as credentialed sonographers performing standard biometry on high-specification machines. These findings have immediate implications for obstetrical care in low-resource settings, advancing the World Health Organization goal of ultrasonography estimation of GA for all pregnant people.

TRIAL REGISTRATION

ClinicalTrials.gov Identifier: NCT05433519.

摘要

重要性

准确评估孕周(GA)对于良好的妊娠护理至关重要,但通常需要超声检查,而在资源匮乏的环境中可能无法进行。本研究开发了一种深度学习人工智能(AI)模型,可从盲式超声扫描中估算 GA,并将其纳入一种低成本、电池供电设备的软件中。

目的

评估无超声检查培训的新手用户使用 AI 增强型超声工具估算 GA 的准确性。

设计、设置和参与者:这项前瞻性诊断准确性研究纳入了来自赞比亚卢萨卡和北卡罗来纳州教堂山的 400 名有存活、单胎、非畸形、早孕的个体。认证超声医师通过经阴道冠臀长测量确定“真实”GA。在整个孕期的随机随访中,包括从 14 0/7 周到 27 6/7 周的主要评估窗口,新手用户使用 AI 增强型设备(索引测试)进行盲式腹部扫描,认证超声医师使用高规格机器(研究标准)进行胎儿生物测量。

主要结局和措施

主要结局是索引测试和研究标准的平均绝对误差(MAE),通过将每种方法的估计值与之前确定的 GA 进行比较来计算,并将差异在预设的 ±2 天范围内的结果视为等效。

结果

在主要评估窗口,AI 增强型设备符合与研究标准等效的标准,其 MAE(SE)为 3.2(0.1)天,而研究标准为 3.0(0.1)天(差异为 0.2 天[95%CI,-0.1 至 0.5])。此外,在真实 GA 以内 7 天的评估比例也相当(索引测试为 90.7%,研究标准为 92.5%)。在预先指定的亚组中,包括赞比亚和北卡罗来纳州队列以及 BMI 较高的个体,性能均一致。

结论和相关性

在 14 至 27 周时,没有超声检查培训经验的新手用户使用低成本、即时护理的 AI 工具估算 GA 的准确性与认证超声医师使用高规格机器进行标准生物测量相当。这些发现对资源匮乏环境中的产科护理具有直接意义,推进了世卫组织对所有孕妇进行超声 GA 估计的目标。

试验注册

ClinicalTrials.gov 标识符:NCT05433519。

相似文献

5
Ultrasound-based gestational-age estimation in late pregnancy.孕晚期基于超声的孕周估计
Ultrasound Obstet Gynecol. 2016 Dec;48(6):719-726. doi: 10.1002/uog.15894.

引用本文的文献

本文引用的文献

8
Expected-value bias in routine third-trimester growth scans.常规孕晚期生长扫描中的期望值偏差。
Ultrasound Obstet Gynecol. 2020 Mar;55(3):375-382. doi: 10.1002/uog.21929.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验