Yadav Sharda, Kc Sanjaya, Blaskovich Mark A T, Lu Cu-Tai, Lam Alfred K, Nguyen Nam-Trung
Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia.
Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia.
Adv Biol (Weinh). 2025 Aug;9(8):e2400626. doi: 10.1002/adbi.202400626. Epub 2025 Jan 30.
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, creating an urgent need for innovative diagnostic solutions. Mechanobiology, a cutting-edge field that investigates how physical forces influence cell behavior, is now revealing new insights into cancer progression. This research focuses on two crucial players: RhoA and Rac1, small yet powerful proteins that regulate the structure and movement of cancer cells. RhoA controls cell adhesion and migration, while Rac1 drives cell movement and invasion. As CRC tumors grow and reshape the colon's mechanical environment, these pathways become disrupted, accelerating cancer progression. Examining the level of RhoA and Rac1 in CRC clinical samples under mechanical strain reveals their potential as diagnostic markers. Tracking the activity of these proteins can unlock valuable insights into cancer cell dissemination, offering new avenues for understanding and diagnosing CRC. This approach holds promise for earlier detection and better outcomes by offering key insights for more effective diagnostic strategies.
结直肠癌(CRC)仍然是癌症相关死亡的主要原因,因此迫切需要创新的诊断解决方案。机械生物学是一个前沿领域,研究物理力如何影响细胞行为,现在它正在揭示癌症进展的新见解。这项研究聚焦于两个关键因素:RhoA和Rac1,这两种虽小但功能强大的蛋白质,它们调节癌细胞的结构和运动。RhoA控制细胞黏附和迁移,而Rac1驱动细胞运动和侵袭。随着CRC肿瘤的生长并重塑结肠的机械环境,这些信号通路会被破坏,从而加速癌症进展。在机械应变下检测CRC临床样本中RhoA和Rac1的水平,揭示了它们作为诊断标志物的潜力。追踪这些蛋白质的活性可以为癌细胞扩散提供有价值的见解,为理解和诊断CRC提供新途径。这种方法有望通过为更有效的诊断策略提供关键见解,实现更早的检测和更好的治疗效果。