Suppr超能文献

通过预训练DNA语言模型在单细胞分辨率下解析非编码突变的表观遗传影响

Epigenetic Impacts of Non-Coding Mutations Deciphered Through Pre-Trained DNA Language Model at Single-Cell Resolution.

作者信息

Liu Zhe, Gu An, Bao Yihang, Lin Guan Ning

机构信息

Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200230, China.

Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200230, China.

出版信息

Adv Sci (Weinh). 2025 Mar;12(11):e2413571. doi: 10.1002/advs.202413571. Epub 2025 Jan 30.

Abstract

DNA methylation plays a critical role in gene regulation, affecting cellular differentiation and disease progression, particularly in non-coding regions. However, predicting the epigenetic consequences of non-coding mutations at single-cell resolution remains a challenge. Existing tools have limited prediction capacity and struggle to capture dynamic, cell-type-specific regulatory changes that are crucial for understanding disease mechanisms. Here, Methven, a deep learning framework designed is presented to predict the effects of non-coding mutations on DNA methylation at single-cell resolution. Methven integrates DNA sequence with single-cell ATAC-seq data and models SNP-CpG interactions over 100 kbp genomic distances. By using a divide-and-conquer approach, Methven accurately predicts both short- and long-range regulatory interactions and leverages the pre-trained DNA language model for enhanced precision in classification and regression tasks. Methven outperforms existing methods and demonstrates robust generalizability to monocyte datasets. Importantly, it identifies CpG sites associated with rheumatoid arthritis, revealing key pathways involved in immune regulation and disease progression. Methven's ability to detect progressive epigenetic changes provides crucial insights into gene regulation in complex diseases. These findings demonstrate Methven's potential as a powerful tool for basic research and clinical applications, advancing this understanding of non-coding mutations and their role in disease, while offering new opportunities for personalized medicine.

摘要

DNA甲基化在基因调控中起着关键作用,影响细胞分化和疾病进展,尤其是在非编码区域。然而,以单细胞分辨率预测非编码突变的表观遗传后果仍然是一项挑战。现有工具的预测能力有限,难以捕捉对理解疾病机制至关重要的动态、细胞类型特异性调控变化。在此,我们提出了一种名为Methven的深度学习框架,用于预测非编码突变在单细胞分辨率下对DNA甲基化的影响。Methven将DNA序列与单细胞ATAC-seq数据整合,并对跨越100 kbp基因组距离的SNP-CpG相互作用进行建模。通过采用分治方法,Methven能够准确预测短程和长程调控相互作用,并利用预训练的DNA语言模型提高分类和回归任务的精度。Methven优于现有方法,并在单核细胞数据集上表现出强大的通用性。重要的是,它识别出与类风湿性关节炎相关的CpG位点,揭示了免疫调节和疾病进展中涉及的关键途径。Methven检测渐进性表观遗传变化的能力为复杂疾病中的基因调控提供了关键见解。这些发现证明了Methven作为基础研究和临床应用的强大工具的潜力,推进了我们对非编码突变及其在疾病中的作用的理解,同时为个性化医疗提供了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7795/11924033/434e6d92b1a8/ADVS-12-2413571-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验