Suppr超能文献

一种用于在肠道组织微环境中剖析宿主-微生物组的多组学空间框架。

A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment.

作者信息

Zhu Bokai, Bai Yunhao, Yeo Yao Yu, Lu Xiaowei, Rovira-Clavé Xavier, Chen Han, Yeung Jason, Nkosi Dingani, Glickman Jonathan, Delgado-Gonzalez Antonio, Gerber Georg K, Angelo Mike, Shalek Alex K, Nolan Garry P, Jiang Sizun

机构信息

Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Nat Commun. 2025 Jan 31;16(1):1230. doi: 10.1038/s41467-025-56237-7.

Abstract

The intricate interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host and microbiome across multiple spatial modalities. We demonstrate MicroCart by investigating gut host and microbiome changes in a murine colitis model, using spatial proteomics, transcriptomics, and glycomics. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multi-omics.

摘要

宿主免疫系统与其微生物群组成部分之间复杂的相互作用会随着肠道组织环境的扰动而发生动态变化。我们在系统层面研究这些事件的能力受到原位方法的显著限制,这些方法能够同时从宿主和微生物群落中获得见解。在此,我们介绍微生物群图谱(MicroCart),这是一个用于跨多种空间模式同时原位探测宿主和微生物群的框架。我们通过使用空间蛋白质组学、转录组学和糖组学,在小鼠结肠炎模型中研究肠道宿主和微生物群的变化,来展示MicroCart。我们的研究结果揭示了组织免疫反应中的整体但系统性的转变,包括响应宿主免疫和上皮细胞状态扰动的组织水平重塑、细菌种群变化、局部炎症反应以及结肠炎期间的代谢过程改变。MicroCart能够通过空间多组学深入研究宿主组织与其微生物群之间的复杂相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed63/11785740/945bc2492e6a/41467_2025_56237_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验