Suppr超能文献

不同执行功能全基因组关联研究的基因组结构方程模型改进了基因发现。

GenomicSEM Modelling of Diverse Executive Function GWAS Improves Gene Discovery.

作者信息

Perry Lucas C, Chevalier Nicolas, Luciano Michelle

机构信息

School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.

出版信息

Behav Genet. 2025 Mar;55(2):71-85. doi: 10.1007/s10519-025-10214-4. Epub 2025 Feb 1.

Abstract

Previous research has supported the use of latent variables as the gold-standard in measuring executive function. However, for logistical reasons genome-wide association studies (GWAS) of executive function have largely eschewed latent variables in favour of singular task measures. As low correlations have traditionally been found between individual executive function (EF) tests, it is unclear whether these GWAS have truly been measuring the same construct. In this study, we addressed this question by performing a factor analysis on summary statistics from eleven GWAS of EF taken from five studies, using GenomicSEM. Models demonstrated a bifactor structure consistent with previous research, with factors capturing common EF and working memory- specific variance. Furthermore, the GWAS performed on this model identified 20 new genomic risk loci for common EF and 4 for working memory reaching genome-wide significance beyond what was found in the constituent GWAS, together resulting in 29 newly mapped EF genes. These results help to clarify the underlying genetic structure of EF and support the idea that EF GWAS are capable of measuring genetic variance related to latent EF constructs even when not using factor scores. Furthermore, they demonstrate that GenomicSEM can combine GWAS with divergent and non-ideal measures of the same phenotype to improve statistical power.

摘要

先前的研究支持将潜在变量作为衡量执行功能的金标准。然而,由于后勤方面的原因,执行功能的全基因组关联研究(GWAS)在很大程度上避开了潜在变量,而倾向于单一任务测量。由于传统上在个体执行功能(EF)测试之间发现的相关性较低,尚不清楚这些GWAS是否真的在测量相同的结构。在本研究中,我们通过使用GenomicSEM对来自五项研究的十一项EF的GWAS汇总统计数据进行因子分析,解决了这个问题。模型显示出与先前研究一致的双因素结构,各因素捕获了共同的EF和工作记忆特异性方差。此外,基于该模型进行的GWAS识别出20个新的常见EF基因组风险位点和4个工作记忆的基因组风险位点,达到全基因组显著性水平,超出了各组成GWAS中的发现,共产生29个新定位的EF基因。这些结果有助于阐明EF的潜在遗传结构,并支持这样一种观点,即EF的GWAS即使不使用因子得分也能够测量与潜在EF结构相关的遗传方差。此外,它们表明GenomicSEM可以将GWAS与同一表型的不同且不理想的测量方法相结合,以提高统计效力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2fe/11882726/fd1c74e5974d/10519_2025_10214_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验