Suppr超能文献

一种新型人工智能框架,用于量化临床因素与非临床因素对术后住院时间的影响并进行比较。

A novel artificial intelligence framework to quantify the impact of clinical compared with nonclinical influences on postoperative length of stay.

作者信息

El Moheb Mohamad, Shen Chengli, Kim Susan, Cummins Kaelyn, Sears Olivia, Sahli Zeyad, Zhang Hongji, Hedrick Traci, Witt Russell G, Tsung Allan

机构信息

Department of Surgery, University of Virginia, Charlottesville, VA; School of Data Science, University of Virginia, Charlottesville, VA.

Department of Surgery, University of Virginia, Charlottesville, VA.

出版信息

Surgery. 2025 May;181:109152. doi: 10.1016/j.surg.2025.109152. Epub 2025 Jan 31.

Abstract

BACKGROUND

The relative proportion of clinical compared with nonclinical influences on length of stay after colectomy has never been measured. We developed a novel machine-learning framework that quantifies the proportion of length of stay after colectomy attributable to clinical factors and infers the overall impact of nonclinical influences.

STUDY DESIGN

Patients who underwent partial colectomy, total colectomy, or low anterior resection included in American College of Surgeons National Surgical Quality Improvement were analyzed. Multivariable linear regression, random forest, and neural network models were developed to assess the impact of 56 clinical variables on length of stay. The random forest and neural network models were fine-tuned to maximize the explanatory power of clinical variables on length of stay. R measured the proportion of length of stay explained by clinical factors. The contribution of nonclinical factors was inferred from residual analysis. Mean absolute error was used to measure the discrepancy between actual and model-predicted length of stay.

RESULTS

Of 96,081 patients, 71% underwent partial colectomy (mean length of stay, 6.8 days; standard deviation, 5.6), 27% low anterior resection (5.4; 4.4), and 2% total colectomy (11.8; 7.1). Clinical factors in multivariable linear regression models accounted for only 29-54% of length of stay variability. The random forest and neural network models demonstrated persistent unexplained length of stay variability even when considering nonlinear interactions (R: random forest [range, 0.46-0.55]; neural network [range, 0.44-0.57]), consistent with multivariable linear regression models. Mean absolute error showed clinical factors could not account for 2-2.5 days of length of stay after low anterior resection and partial colectomy, and 4 days after total colectomy.

CONCLUSION

This is the first study to quantify the overall influence of clinical factors on post-colectomy length of stay, revealing they explain less than 55% of variability. By maximizing clinical factors' explanatory impact using machine learning, the remaining variability is inferred to be nonclinical. Our findings provide hospitals with a novel paradigm to indirectly measure the influence of previously elusive nonclinical factors.

摘要

背景

临床因素与非临床因素对结肠切除术后住院时间的相对影响比例从未被测量过。我们开发了一种新颖的机器学习框架,该框架可量化结肠切除术后住院时间中归因于临床因素的比例,并推断非临床影响的总体作用。

研究设计

对美国外科医师学会国家外科质量改进项目中接受部分结肠切除术、全结肠切除术或低位前切除术的患者进行分析。开发多变量线性回归、随机森林和神经网络模型,以评估56个临床变量对住院时间的影响。对随机森林和神经网络模型进行微调,以最大化临床变量对住院时间的解释力。R衡量临床因素所解释的住院时间比例。通过残差分析推断非临床因素的作用。平均绝对误差用于衡量实际住院时间与模型预测住院时间之间的差异。

结果

在96081例患者中,71%接受了部分结肠切除术(平均住院时间6.8天;标准差5.6),27%接受了低位前切除术(5.4天;4.4),2%接受了全结肠切除术(11.8天;7.1)。多变量线性回归模型中的临床因素仅占住院时间变异性的29%-54%。即使考虑非线性相互作用,随机森林和神经网络模型仍显示存在持续无法解释的住院时间变异性(R:随机森林[范围,0.46-0.55];神经网络[范围,0.44-0.57]),这与多变量线性回归模型一致。平均绝对误差显示,临床因素无法解释低位前切除术和部分结肠切除术后2-2.5天的住院时间,以及全结肠切除术后4天的住院时间。

结论

这是第一项量化临床因素对结肠切除术后住院时间总体影响的研究,结果表明它们解释的变异性不到55%。通过使用机器学习最大化临床因素的解释作用,剩余的变异性被推断为非临床因素所致。我们的研究结果为医院提供了一种新的模式,以间接测量以前难以捉摸的非临床因素的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验