Putman Kristin, Moheb Mohamad El, Shen Chengli, Witt Russell G, Ruff Samantha M, Tsung Allan
Department of Surgery, University of Virginia, Charlottesville, VA, USA.
School of Data Science, University of Virginia, Charlottesville, VA, USA.
Ann Surg Oncol. 2025 May;32(5):3526-3538. doi: 10.1245/s10434-025-16942-5. Epub 2025 Feb 5.
Length of stay (LOS) is a key indicator of posthepatectomy care quality. While clinical factors influencing LOS are identified, the balance between clinical and nonclinical influences remains unquantified. We developed an artificial intelligence (AI) framework to quantify clinical influences on LOS and infer the impact of hard-to-measure nonclinical factors.
Patients from the 2017 to 2021 ACS NSQIP Hepatectomy-Targeted database were stratified into major and minor hepatectomy groups. A three-tiered model-multivariable linear regression (MLR), random forest (RF), and extreme gradient boosting (XGBoost)-was developed to evaluate the effect of 52 clinical variables on LOS. Models were fine-tuned to maximize clinical variables' explanatory power, with residual unexplained variability attributed to nonclinical factors. Model performance was measured using R and mean absolute error (MAE).
A total of 21,039 patients (mean age: 60 years; 51% male) were included: 70% underwent minor resection (mean LOS: 5.0 days), and 30% underwent major resection (mean LOS: 6.9 days). Random forest had the best performance, explaining 75% of LOS variability for both groups (R: 0.75). The significant improvement in R from MLR to RF suggests significant nonlinear interactions of clinical factors' impact on LOS. Mean absolute errors were 1.15 and 1.38 days for minor and major resections, indicating that clinical factors could not explain 1.15 to 1.38 days of LOS.
This study is the first to measure the true influence of clinical factors on posthepatectomy LOS, showing that they explain 75% of the variability. Furthermore, it indirectly evaluated the overall impact of hard-to-measure nonclinical factors, revealing that they account for 25% of LOS.
住院时间(LOS)是肝切除术后护理质量的关键指标。虽然已确定影响住院时间的临床因素,但临床和非临床影响之间的平衡仍未得到量化。我们开发了一种人工智能(AI)框架,以量化临床因素对住院时间的影响,并推断难以测量的非临床因素的影响。
将2017年至2021年美国外科医师协会国家外科质量改进计划(ACS NSQIP)肝切除靶向数据库中的患者分为大肝切除组和小肝切除组。开发了一个三层模型——多变量线性回归(MLR)、随机森林(RF)和极端梯度提升(XGBoost)——以评估52个临床变量对住院时间的影响。对模型进行微调,以最大限度地提高临床变量的解释力,将剩余无法解释的变异性归因于非临床因素。使用R和平均绝对误差(MAE)来衡量模型性能。
共纳入21039例患者(平均年龄:60岁;51%为男性):70%接受小范围切除(平均住院时间:5.0天),30%接受大范围切除(平均住院时间:6.9天)。随机森林表现最佳,两组住院时间变异性的解释率均为75%(R:0.75)。从MLR到RF,R的显著提高表明临床因素对住院时间的影响存在显著的非线性相互作用。小范围和大范围切除的平均绝对误差分别为1.15天和1.38天,表明临床因素无法解释1.15至1.38天的住院时间。
本研究首次测量了临床因素对肝切除术后住院时间的真实影响,表明它们解释了75%的变异性。此外,它间接评估了难以测量的非临床因素的总体影响,表明它们占住院时间的25%。