Liu Benke, Wang Yongxiong, Wang Zhe, Wan Xin, Li Chenguang
University of Shanghai for Science and Technology, Shanghai 200093, China.
University of Shanghai for Science and Technology, Shanghai 200093, China.
Neuroscience. 2025 Mar 17;569:195-209. doi: 10.1016/j.neuroscience.2025.01.049. Epub 2025 Jan 30.
In the context of EEG-based emotion recognition tasks, a conventional strategy involves the extraction of spatial and temporal features, subsequently fused for emotion prediction. However, due to the pronounced individual variability in EEG and the constrained performance of conventional time-series models, cross-subject experiments often yield suboptimal results. To address this limitation, we propose a novel network named Time-Space Emotion Network (TSEN), which capitalizes on the fusion of spatiotemporal information for emotion recognition.
Diverging from prior models that integrate temporal and spatial features, our network introduces a Convolutional Block Attention Module (CBAM) during spatial feature extraction to judiciously allocate weights to feature channels and spatial positions. Furthermore, we bolster network stability and improve domain adaptation through the incorporation of a residual block featuring Switchable Whitening (SW). Temporal feature extraction is accomplished using a Temporal Convolutional Network (TCN), ensuring elevated prediction accuracy while maintaining a lightweight network structure.
We conduct experiments on the preprocessed DEAP dataset. Ultimately, the average accuracy for arousal prediction is 0.7032 with a variance of 0.0876, and the F1 score is 0.6843. For valence prediction, the accuracy is 0.6792 with a variance of 0.0853, and the F1 score is 0.6826.
TSEN exhibits high accuracy and low variance in cross-subject emotion prediction tasks, effectively reducing individual differences among different subjects. Additionally, TSEN has a smaller parameter count, enabling faster execution.
在基于脑电图的情绪识别任务中,传统策略包括提取空间和时间特征,随后将其融合用于情绪预测。然而,由于脑电图中明显的个体差异以及传统时间序列模型的性能受限,跨主体实验往往产生次优结果。为解决这一局限性,我们提出了一种名为时空情绪网络(TSEN)的新型网络,该网络利用时空信息融合进行情绪识别。
与整合时间和空间特征的先前模型不同,我们的网络在空间特征提取过程中引入了卷积块注意力模块(CBAM),以便明智地为特征通道和空间位置分配权重。此外,我们通过合并具有可切换白化(SW)的残差块来增强网络稳定性并改善域适应性。使用时间卷积网络(TCN)完成时间特征提取,在保持轻量级网络结构的同时确保提高预测准确性。
我们在预处理的DEAP数据集上进行实验。最终,唤醒预测的平均准确率为0.7032,方差为0.0876,F1分数为0.6843。对于效价预测,准确率为0.6792,方差为0.0853,F1分数为0.6826。
TSEN在跨主体情绪预测任务中表现出高准确率和低方差,有效减少了不同主体之间的个体差异。此外,TSEN的参数数量较少,能够更快地执行。