Suppr超能文献

用于预测胰腺癌无复发生存率的多尺度深度学习放射组学:一项多中心研究。

Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study.

作者信息

Gu Qianbiao, Sun Huiling, Liu Peng, Hu Xiaoli, Yang Jiankang, Chen Yong, Xing Yan

机构信息

Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, 830011 Wulumuqi, China.

Department of CT and MR, Traditional Chinese Medicine Hospital of Changji Hui Autonomous Prefecture, 831100 Changji Hui Autonomous Prefecture, China.

出版信息

Radiother Oncol. 2025 Apr;205:110770. doi: 10.1016/j.radonc.2025.110770. Epub 2025 Jan 31.

Abstract

PURPOSE

This multicenter study aimed to develop and validate a multiscale deep learning radiomics nomogram for predicting recurrence-free survival (RFS) in patients with pancreatic ductal adenocarcinoma (PDAC).

MATERIALS AND METHODS

A total of 469 PDAC patients from four hospitals were divided into training and test sets. Handcrafted radiomics and deep learning (DL) features were extracted from optimal regions of interest, encompassing both intratumoral and peritumoral areas. Univariate Cox regression, LASSO regression, and multivariate Cox regression selected features for three image signatures (intratumoral, peritumoral radiomics, and DL). A multiscale nomogram was constructed and validated against the 8th AJCC staging system.

RESULTS

The 4 mm peritumoral VOI yielded the best radiomics prediction, while a 15 mm expansion was optimal for deep learning. The multiscale nomogram demonstrated a C-index of 0.82 (95 % CI: 0.78-0.85) in the training set and 0.70 (95 % CI: 0.64-0.76) in the external test 1 (high-volume hospital), with the external test 2 (low-volume hospital) showing a C-index of 0.78 (95 % CI: 0.65-0.91). These outperformed the AJCC system's C-index (0.54-0.57). The area under the curve (AUC) for recurrence prediction at 0.5, 1, and 2 years was 0.89, 0.94, and 0.89 in the training set, with AUC values ranging from 0.75 to 0.97 in the external validation sets, consistently surpassing the AJCC system across all sets. Kaplan-Meier analysis confirmed significant differences in prognosis between high- and low-risk groups (P < 0.01 across all cohorts).

CONCLUSION

The multiscale nomogram effectively stratifies recurrence risk in PDAC patients, enhancing presurgical clinical decision-making and potentially improving patient outcomes.

摘要

目的

本多中心研究旨在开发并验证一种多尺度深度学习放射组学列线图,用于预测胰腺导管腺癌(PDAC)患者的无复发生存期(RFS)。

材料与方法

来自四家医院的469例PDAC患者被分为训练集和测试集。从包括肿瘤内和肿瘤周围区域的最佳感兴趣区域提取手工放射组学和深度学习(DL)特征。单因素Cox回归、LASSO回归和多因素Cox回归为三种图像特征(肿瘤内、肿瘤周围放射组学和DL)选择特征。构建了一个多尺度列线图,并根据第8版美国癌症联合委员会(AJCC)分期系统进行验证。

结果

4mm肿瘤周围感兴趣体积(VOI)产生了最佳的放射组学预测结果,而15mm扩展对于深度学习是最佳的。多尺度列线图在训练集中的C指数为0.82(95%CI:0.78 - 0.85),在外部测试1(大型医院)中为0.70(95%CI:0.64 - 0.76),外部测试2(小型医院)的C指数为0.78(95%CI:0.65 - 0.91)。这些结果优于AJCC系统的C指数(0.54 - 0.57)。训练集中0.5、1和2年复发预测的曲线下面积(AUC)分别为0.89、0.94和0.89,外部验证集中的AUC值在0.75至0.97之间,在所有数据集中均持续超过AJCC系统。Kaplan - Meier分析证实高风险组和低风险组之间的预后存在显著差异(所有队列中P < 0.01)。

结论

多尺度列线图有效地对PDAC患者的复发风险进行分层,增强术前临床决策,并可能改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验