Suppr超能文献

胃肠外科肿瘤学中的个性化医疗方法:当前趋势与未来展望

Personalized Medical Approach in Gastrointestinal Surgical Oncology: Current Trends and Future Perspectives.

作者信息

Kim Dae Hoon

机构信息

Department of Surgery, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea.

Department of Surgery, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea.

出版信息

J Pers Med. 2025 Apr 27;15(5):175. doi: 10.3390/jpm15050175.

Abstract

Advances in artificial intelligence (AI), multi-omic profiling, and sophisticated imaging technologies have significantly advanced personalized medicine in gastrointestinal surgical oncology. These technological innovations enable precise patient stratification, tailored surgical strategies, and individualized therapeutic approaches, thereby significantly enhancing clinical outcomes. Despite remarkable progress, challenges persist, including the standardization and integration of diverse data types, ethical concerns regarding patient privacy, and rigorous clinical validation of predictive models. Addressing these challenges requires establishing international standards for data interoperability, such as Fast Healthcare Interoperability Resources, and adopting advanced security methods, such as homomorphic encryption, to facilitate secure multi-institutional data sharing. Moreover, ensuring model transparency and explainability through techniques such as explainable AI is critical for fostering trust among clinicians and patients. The successful integration of these advanced technologies necessitates strong multidisciplinary collaboration among surgeons, radiologists, geneticists, pathologists, and oncologists. Ultimately, the continued development and effective implementation of these personalized medical strategies complemented by human expertise promise a transformative shift toward patient-centered care, improving long-term outcomes for patients with gastrointestinal cancer.

摘要

人工智能(AI)、多组学分析以及先进成像技术的进展显著推动了胃肠外科肿瘤学中的个性化医疗。这些技术创新实现了精确的患者分层、量身定制的手术策略以及个性化的治疗方法,从而显著改善了临床结果。尽管取得了显著进展,但挑战依然存在,包括不同数据类型的标准化与整合、患者隐私方面的伦理问题以及预测模型的严格临床验证。应对这些挑战需要建立数据互操作性的国际标准,如快速医疗互操作性资源(Fast Healthcare Interoperability Resources),并采用先进的安全方法,如同态加密,以促进安全的多机构数据共享。此外,通过可解释人工智能等技术确保模型的透明度和可解释性对于增进临床医生和患者之间的信任至关重要。这些先进技术的成功整合需要外科医生、放射科医生、遗传学家、病理学家和肿瘤学家之间强有力的多学科协作。最终,这些个性化医疗策略在人类专业知识的补充下持续发展并有效实施,有望朝着以患者为中心的护理实现变革性转变,改善胃肠癌患者的长期预后。

相似文献

2
Towards secure and trusted AI in healthcare: A systematic review of emerging innovations and ethical challenges.
Int J Med Inform. 2025 Mar;195:105780. doi: 10.1016/j.ijmedinf.2024.105780. Epub 2024 Dec 30.
3
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.
4
5
Artificial intelligence in hospital infection prevention: an integrative review.
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.
6
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.
Cureus. 2023 Aug 10;15(8):e43262. doi: 10.7759/cureus.43262. eCollection 2023 Aug.
7
Trustworthy and ethical AI-enabled cardiovascular care: a rapid review.
BMC Med Inform Decis Mak. 2024 Sep 4;24(1):247. doi: 10.1186/s12911-024-02653-6.
10
Revolutionizing surgery: AI and robotics for precision, risk reduction, and innovation.
J Robot Surg. 2025 Jan 7;19(1):47. doi: 10.1007/s11701-024-02205-0.

本文引用的文献

1
Advanced NLP-driven predictive modeling for tailored treatment strategies in gastrointestinal cancer.
SLAS Technol. 2025 Jun;32:100264. doi: 10.1016/j.slast.2025.100264. Epub 2025 Mar 6.
2
A systematic review of large language model (LLM) evaluations in clinical medicine.
BMC Med Inform Decis Mak. 2025 Mar 7;25(1):117. doi: 10.1186/s12911-025-02954-4.
5
A foundation systematic review of natural language processing applied to gastroenterology & hepatology.
BMC Gastroenterol. 2025 Feb 6;25(1):58. doi: 10.1186/s12876-025-03608-5.
6
Deep Learning-Based Accelerated MR Cholangiopancreatography Without Fully-Sampled Data.
NMR Biomed. 2025 Mar;38(3):e70002. doi: 10.1002/nbm.70002.
7
Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study.
Radiother Oncol. 2025 Apr;205:110770. doi: 10.1016/j.radonc.2025.110770. Epub 2025 Jan 31.
8
High-throughput sequencing: a breakthrough in molecular diagnosis for precision medicine.
Funct Integr Genomics. 2025 Jan 22;25(1):22. doi: 10.1007/s10142-025-01529-w.
9
Artificial intelligence in gastrointestinal cancers: Diagnostic, prognostic, and surgical strategies.
Cancer Lett. 2025 Mar 1;612:217461. doi: 10.1016/j.canlet.2025.217461. Epub 2025 Jan 12.
10
A Transfer Learning Radiomics Nomogram to Predict the Postoperative Recurrence of Advanced Gastric Cancer.
J Gastroenterol Hepatol. 2025 Apr;40(4):844-854. doi: 10.1111/jgh.16863. Epub 2024 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验