Kadiyala Nageswararao, Tirukkovalluri Siva Rao, Gorli Divya, Genji Jaishree, Matangi Ravichandra, Singupilla Sai Supriya
Department of Chemistry, Dr. V. S. Krishna Govt. Degree College (A), Maddilapalem, Visakhapatnam, Andhra Pradesh, 530013, India.
Department of Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India.
ACS Omega. 2025 Jan 2;10(3):2658-2678. doi: 10.1021/acsomega.4c07743. eCollection 2025 Jan 28.
This work aims to produce semiconductor nanoparticles capable of harnessing visible light for the degradation of dyes and microbes. Employing an ionic liquid-assisted sol-gel process with varying dopant weight percentages, the study focuses on crafting Cerium (Ce) and Phosphorus (P) doped TiO Nanomaterials. Structural assessments, including Powder X-ray Diffraction (confirming the anatase phase), Transmission Electron Microscopy (revealing a particle size of 6.2 nm), Brunauer-Emmett-Teller surface area analysis (yielding 166 m/gr), and Scanning Electron Microscopy (examining the morphology), were conducted. The catalysts were further evaluated for optical characteristics: UV-vis diffuse reflectance spectrum (indicating an energy gap of 2.59 eV), Electrochemical Impedance Spectroscopy (with an E of -0.30 V), and Valence band XPS (showing E at 2.03 eV). Substitutional doping of dopants into the TiO lattice was confirmed through X-ray photoelectron spectroscopy and Fourier Transform Infra-Red analysis. Photoluminescence Spectrum and Time Correlated Single Photon Counting analysis was employed to investigate electron-hole recombination. These characterizations suggest the catalysts are effective in degrading microorganisms and dyes under visible light exposure. Optimal conditions were obtained using CPT5IL2 at pH 3, 0.10 g catalyst dosage, and an initial dye concentration of 10 mg/L, which were determined to achieve complete dye degradation within 60 min. Furthermore, the catalyst's antibacterial and antifungal activity against (MTCC-241, Gram-negative), (MTCC-98, Gram-negative), and (MTCC-277) were studied.
这项工作旨在制备能够利用可见光降解染料和微生物的半导体纳米颗粒。该研究采用离子液体辅助溶胶 - 凝胶工艺,改变掺杂剂的重量百分比,重点制备铈(Ce)和磷(P)掺杂的TiO纳米材料。进行了结构评估,包括粉末X射线衍射(确认锐钛矿相)、透射电子显微镜(显示粒径为6.2 nm)、布鲁诺尔 - 埃米特 - 泰勒表面积分析(得出166 m²/gr)和扫描电子显微镜(检查形态)。还对催化剂的光学特性进行了进一步评估:紫外 - 可见漫反射光谱(表明能隙为2.59 eV)、电化学阻抗谱(E为 - 0.30 V)和价带X射线光电子能谱(显示E为2.03 eV)。通过X射线光电子能谱和傅里叶变换红外分析证实了掺杂剂在TiO晶格中的替代掺杂。采用光致发光光谱和时间相关单光子计数分析来研究电子 - 空穴复合。这些表征表明催化剂在可见光照射下对降解微生物和染料是有效的。使用CPT5IL2在pH值为3、催化剂用量为0.10 g和初始染料浓度为10 mg/L的条件下获得了最佳条件,经测定可在60分钟内实现染料的完全降解。此外,还研究了该催化剂对大肠杆菌(MTCC - 241,革兰氏阴性)、肺炎克雷伯菌(MTCC - 98,革兰氏阴性)和白色念珠菌(MTCC - 277)的抗菌和抗真菌活性。