Suppr超能文献

结直肠癌一线化疗后骨髓抑制的风险预测

Risk Prediction of Myelosuppression Following First-line Chemotherapy in Colorectal Cancer.

作者信息

Du Yanyuan, Liu Yuming, Fang Ruiying, Cai Liu, Song Ying, Ma Susu, Yu Huibo, Gao Jin, Xiong Hongtai, Zhang Hanyue, Li Baihui, Zheng Honggang

机构信息

Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.

Beijing University of Chinese Medicine, Beijing 100029, China.

出版信息

J Cancer. 2025 Jan 20;16(4):1379-1396. doi: 10.7150/jca.104412. eCollection 2025.

Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with over 1.9 million new cases and 904,000 deaths in 2022. Chemotherapy is a primary treatment for CRC but often leads to myelosuppression, significantly affecting treatment efficacy and patient outcomes. Predictive tools for chemotherapy-induced myelosuppression are currently lacking. This retrospective study analyzed 855 CRC patients from Guang'anmen Hospital who received first-line chemotherapy (CapeOx, FOLFOX, FOLFIRI) between April 2020 and July 2024. Patients were divided into training (684) and validation (171) groups. Univariate analysis, LASSO regression, and multivariable logistic regression identified risk factors for myelosuppression, and a predictive nomogram was developed and validated using ROC curves, calibration curves, and decision curve analysis. Propensity score matching (PSM) was employed to minimize baseline differences between groups, followed by multivariate logistic regression analysis on the post-PSM data. The incidence of myelosuppression was similar in both groups (33.04% vs. 32.16%). Significant predictors included age, smoking, diabetes, BMI, tumor location, lung metastasis, albumin (ALB) levels, and carcinoembryonic antigen (CEA) levels. The nomogram demonstrated good predictive performance with AUC values of 0.78 and 0.80 for the training and validation groups, respectively, showing consistent and clinically useful predictions. PSM further validated the robustness of the model, confirming BMI as a consistently significant predictor of myelosuppression. The study identified key risk factors for chemotherapy-induced myelosuppression in CRC patients and developed a nomogram for prediction. This tool can help clinicians assess risk and guide treatment decisions. Limitations include potential selection bias and the need for external validation in diverse populations. Future studies should further refine and validate this predictive model.

摘要

结直肠癌(CRC)是癌症相关死亡的主要原因,2022年新增病例超过190万例,死亡90.4万例。化疗是CRC的主要治疗方法,但常导致骨髓抑制,严重影响治疗效果和患者预后。目前缺乏化疗诱导骨髓抑制的预测工具。这项回顾性研究分析了2020年4月至2024年7月期间在广安门医院接受一线化疗(CapeOx、FOLFOX、FOLFIRI)的855例CRC患者。患者分为训练组(684例)和验证组(171例)。单因素分析、LASSO回归和多变量逻辑回归确定了骨髓抑制的危险因素,并使用ROC曲线、校准曲线和决策曲线分析开发并验证了预测列线图。采用倾向评分匹配(PSM)以最小化组间基线差异,然后对PSM后的数据进行多变量逻辑回归分析。两组骨髓抑制的发生率相似(33.04%对32.16%)。显著的预测因素包括年龄、吸烟、糖尿病、BMI、肿瘤位置、肺转移、白蛋白(ALB)水平和癌胚抗原(CEA)水平。列线图显示出良好的预测性能,训练组和验证组的AUC值分别为0.78和0.80,显示出一致且临床有用的预测。PSM进一步验证了模型的稳健性,确认BMI是骨髓抑制的持续显著预测因素。该研究确定了CRC患者化疗诱导骨髓抑制的关键危险因素,并开发了预测列线图。该工具可帮助临床医生评估风险并指导治疗决策。局限性包括潜在的选择偏倚以及在不同人群中进行外部验证的必要性。未来的研究应进一步完善和验证该预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a9/11786037/6a9f6324960a/jcav16p1379g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验