Suppr超能文献

EFNet:利用深度学习从心脏超声视频中估计左心室射血分数

EFNet: estimation of left ventricular ejection fraction from cardiac ultrasound videos using deep learning.

作者信息

Ali Waqas, Alsabban Wesam, Shahbaz Muhammad, Al-Laith Ali, Almogadwy Bassam

机构信息

Computer Science Department, University of Engineering and Technology, Lahore, Pakistan.

Department of Computer and Network Engineering, College of Computing, Umm Al-Qura University, Makkah, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2025 Jan 21;11:e2506. doi: 10.7717/peerj-cs.2506. eCollection 2025.

Abstract

The ejection fraction (EF) is a vital metric for assessing cardiovascular function through cardiac ultrasound. Manual evaluation is time-consuming and exhibits high variability among observers. Deep-learning techniques offer precise and autonomous EF predictions, yet these methods often lack explainability. Accurate heart failure prediction using cardiac ultrasound is challenging due to operator dependency and inconsistent video quality, resulting in significant interobserver variability. To address this, we developed a method integrating convolutional neural networks (CNN) and transformer models for direct EF estimation from ultrasound video scans. This article introduces a Residual Transformer Module (RTM) that extends a 3D ResNet-based network to analyze (2D + t) spatiotemporal cardiac ultrasound video scans. The proposed method, EFNet, utilizes cardiac ultrasound video images for end-to-end EF value prediction. Performance evaluation on the EchoNet-Dynamic dataset yielded a mean absolute error (MAE) of 3.7 and an R2 score of 0.82. Experimental results demonstrate that EFNet outperforms state-of-the-art techniques, providing accurate EF predictions.

摘要

射血分数(EF)是通过心脏超声评估心血管功能的一项重要指标。人工评估耗时且观察者之间的差异很大。深度学习技术能够提供精确且自动的EF预测,但这些方法往往缺乏可解释性。由于依赖操作人员且视频质量不一致,使用心脏超声进行准确的心力衰竭预测具有挑战性,这会导致观察者之间存在显著差异。为了解决这个问题,我们开发了一种将卷积神经网络(CNN)和Transformer模型相结合的方法,用于从超声视频扫描中直接估计EF。本文介绍了一种残差Transformer模块(RTM),它扩展了基于3D ResNet的网络,以分析(2D + t)时空心脏超声视频扫描。所提出的方法EFNet利用心脏超声视频图像进行端到端的EF值预测。在EchoNet-Dynamic数据集上的性能评估得出平均绝对误差(MAE)为3.7,R2分数为0.82。实验结果表明,EFNet优于现有技术,能够提供准确的EF预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e97/11784862/d71449c59dce/peerj-cs-11-2506-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验