Shen Chengkang, Zhu Hao, Zhou You, Liu Yu, Yi Si, Dong Lili, Zhao Weipeng, Brady David J, Cao Xun, Ma Zhan, Lin Yi
School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
Medical School, Nanjing University, Nanjing 210093, China.
Eur Heart J Digit Health. 2024 Sep 24;6(1):137-146. doi: 10.1093/ehjdh/ztae072. eCollection 2025 Jan.
Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners. We assess the system's usability among novice users and evaluate its performance against expert interpretations and advanced deep learning (DL) tools.
We developed an implicit neural representation network to reconstruct a 3D cardiac volume from sequential multi-view 2DE images, followed by automatic segmentation of LV and RV areas to calculate volume sizes and EF values. Our study involved 127 patients to assess EF estimation accuracy against expert readings and two-dimensional (2D) video-based DL models. A subset of 56 patients was utilized to evaluate image quality and 3D accuracy and another 50 to test usability by novice users and across various ultrasound machines. CardiacField generated a 3D heart from 2D echocardiograms with <2 min processing time. The LVEF predicted by our method had a mean absolute error (MAE) of , while the RVEF had an MAE of .
Employing a straightforward apical ring scan with a cost-effective 2DE probe, our method achieves a level of EF accuracy for assessing LV and RV function that is comparable to that of three-dimensional echocardiography probes.
准确估计心脏功能对于检测和监测心血管疾病至关重要。虽然二维超声心动图(2DE)广泛可用且被使用,但其需要专门培训,容易出现观察者间差异,并且缺乏全面的三维(3D)信息。我们介绍了CardiacField,这是一种使用2DE探头的计算超声心动图系统,用于精确、自动估计左心室(LV)和右心室(RV)射血分数(EF),对于非心血管医疗从业者来说特别易于使用。我们评估了该系统在新手用户中的可用性,并根据专家解读和先进的深度学习(DL)工具评估其性能。
我们开发了一个隐式神经表示网络,从连续的多视图2DE图像重建3D心脏容积,然后自动分割LV和RV区域以计算容积大小和EF值。我们的研究涉及127名患者,以评估与专家读数和基于二维(2D)视频的DL模型相比的EF估计准确性。56名患者的子集用于评估图像质量和3D准确性,另外50名用于测试新手用户以及在各种超声机器上的可用性。CardiacField在<2分钟的处理时间内从2D超声心动图生成3D心脏。我们的方法预测的左心室射血分数(LVEF)平均绝对误差(MAE)为 ,而右心室射血分数(RVEF)的MAE为 。
通过使用具有成本效益的2DE探头进行简单的心尖环扫描,我们的方法在评估LV和RV功能的EF准确性方面达到了与三维超声心动图探头相当的水平。