Wani Aasim Ayaz, Abeer Fatima
School of Engineering, Cornell University, Ithaca, New York, United States.
Jahurul Islam Medical College, University of Dhaka, Bhagalpur, Bangladesh.
PeerJ Comput Sci. 2025 Jan 2;11:e2612. doi: 10.7717/peerj-cs.2612. eCollection 2025.
Warfarin, a commonly prescribed anticoagulant, poses significant dosing challenges due to its narrow therapeutic range and high variability in patient responses. This study applies advanced machine learning techniques to improve the accuracy of international normalized ratio (INR) predictions using the MIMIC-III dataset, addressing the critical issue of missing data. By leveraging dimensionality reduction methods such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and advanced imputation techniques including denoising autoencoders (DAE) and generative adversarial networks (GAN), we achieved significant improvements in predictive accuracy. The integration of these methods substantially reduced prediction errors compared to traditional approaches. This research demonstrates the potential of machine learning (ML) models to provide more personalized and precise dosing strategies that reduce the risks of adverse drug events. Our method could integrate into clinical workflows to enhance anticoagulation therapy in cases of missing data, with potential applications in other complex medical treatments.
华法林是一种常用的抗凝剂,由于其治疗窗狭窄且患者反应差异大,在给药方面面临重大挑战。本研究应用先进的机器学习技术,利用MIMIC-III数据集提高国际标准化比值(INR)预测的准确性,解决数据缺失这一关键问题。通过利用主成分分析(PCA)和t分布随机邻域嵌入(t-SNE)等降维方法,以及包括去噪自动编码器(DAE)和生成对抗网络(GAN)在内的先进插补技术,我们在预测准确性方面取得了显著提高。与传统方法相比,这些方法的整合大幅降低了预测误差。本研究表明,机器学习(ML)模型有潜力提供更个性化、精确的给药策略,降低药物不良事件风险。我们的方法可融入临床工作流程,以在数据缺失的情况下加强抗凝治疗,在其他复杂医疗中也有潜在应用。