Suppr超能文献

基于条件医学生成对抗网络的MIMIC-III数据库对重症监护病房住院患者的死亡率预测。

Mortality prediction among ICU inpatients based on MIMIC-III database results from the conditional medical generative adversarial network.

作者信息

Yang Wei, Zou Hong, Wang Meng, Zhang Qin, Li Shadan, Liang Hongyin

机构信息

Department of Urology, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China.

Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610083, China.

出版信息

Heliyon. 2023 Jan 24;9(2):e13200. doi: 10.1016/j.heliyon.2023.e13200. eCollection 2023 Feb.

Abstract

BACKGROUND AND AIMS

Improved mortality prediction among intensive care unit (ICU) inpatients is a valuable and challenging task. Limited clinical data, especially with appropriate labels, are an important element restricting accurate predictions. Generative adversarial networks (GANs) are excellent generative models and have shown great potential for data simulation. However, there have been no relevant studies using GANs to predict mortality among ICU inpatients. In this study, we aim to evaluate the predictive performance of a variant of GAN called conditional medical GAN (c-med GAN) compared with some baseline models, including simplified acute physiology score II (SAPS II), support vector machine (SVM), and multilayer perceptron (MLP).

METHODS

Data from a publicly available intensive care database, the Medical Information Mart for Intensive Care III (MIMIC-III) database (v1.4), were included in this study. The area under the precision-recall curve (PR-AUC), area under the receiver operating characteristic curve (ROC-AUC), and F1 score were used to evaluate the predictive performance. In addition, the size of the dataset was artificially reduced, and the performance of the c-med GAN was compared in different size datasets.

RESULTS

The results showed that c-med GAN achieves the best PR-AUC, ROC-AUC, and F1 score compared with SAPS II, SVM, and MLP when training in the full MIMIC-III dataset. When the size of the dataset was reduced, the prediction performances of both MLP and c-med GAN were affected. However, the c-med GAN still outperformed MLP on smaller datasets and had less degradation.

CONCLUSION

The prediction of in-hospital mortality based on the c-med GAN for ICU patients showed better performance than the baseline models. Despite some inadequacies, this model may have a promising future in clinical applications which will be explored by further research.

摘要

背景与目的

改善重症监护病房(ICU)住院患者的死亡率预测是一项有价值且具有挑战性的任务。有限的临床数据,尤其是带有适当标签的数据,是限制准确预测的重要因素。生成对抗网络(GAN)是出色的生成模型,在数据模拟方面显示出巨大潜力。然而,尚无使用GAN预测ICU住院患者死亡率的相关研究。在本研究中,我们旨在评估一种名为条件医学GAN(c-med GAN)的GAN变体与一些基线模型(包括简化急性生理学评分II(SAPS II)、支持向量机(SVM)和多层感知器(MLP))相比的预测性能。

方法

本研究纳入了来自公开可用的重症监护数据库——重症监护医学信息集市III(MIMIC-III)数据库(版本1.4)的数据。使用精确召回率曲线下面积(PR-AUC)、受试者操作特征曲线下面积(ROC-AUC)和F1分数来评估预测性能。此外,人为减少数据集的大小,并比较c-med GAN在不同大小数据集中的性能。

结果

结果表明,在完整的MIMIC-III数据集中进行训练时,与SAPS II、SVM和MLP相比,c-med GAN实现了最佳的PR-AUC、ROC-AUC和F1分数。当数据集大小减少时,MLP和c-med GAN的预测性能均受到影响。然而,在较小的数据集中,c-med GAN仍优于MLP,且退化程度较小。

结论

基于c-med GAN对ICU患者进行院内死亡率预测的性能优于基线模型。尽管存在一些不足,但该模型在临床应用中可能具有广阔前景,有待进一步研究探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b8/9925961/3c349d4b6e6e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验