Araya Miguel, Järvenpää Antti, Rautio Timo, Vindas Rafael, Estrada Roberto, de Ruijter Mylène, Guillén Teodolito
Bio-inspired Processes and Materials Research Group, Instituto Tecnológico de Costa Rica, Cartago, 30101, Costa Rica.
Future Manufacturing Technologies Research Group, University of Oulu, Oulu, 90014, Finland.
Mater Today Bio. 2025 Jan 7;31:101450. doi: 10.1016/j.mtbio.2025.101450. eCollection 2025 Apr.
Titanium-based lattice structures have gained significant attention in biomedical engineering due to their potential to mimic bone-like behavior and improve implant performance. This study evaluates the performance of bio-inspired Ti64 TPMS Gyroyd and Stochastic lattice structures fabricated via Powder Bed Fusion-Laser Beam (PBF-LB), focusing on their in-vivo and ex-vivo mechanical and biological responses for biomedical applications. Utilizing an SLM 280 HL printer, samples exhibited notable geometric accuracy essential for mechanical integrity. The study highlights significant mechanical properties and geometric precision improvements achieved through chemical etching. Mechanical characterization revealed that the as-built Gyroid lattice had the highest elastic modulus (3.64 GPa) and yield strength (200.65 MPa), which improved post-etching (3.62 GPa and 219.35 MPa, respectively). The Stochastic lattice demonstrated lower yield strength values post-etching (169.81 MPa). In-vivo analyses in horse models, both structures demonstrated excellent biocompatibility and osseointegration with no adverse inflammatory responses. Ex-vivo push-out tests showed that the chemically etched Gyroid structure achieved the highest resistance to push-out force (1645.407 N) and most significant displacement (2.754 mm), indicating superior energy absorption (4920.425 mJ). These findings underscore the critical influence of microstructural design and surface treatments on implant functionality, offering novel insights into improving biomedical implant performance through lattice architecture and post-processing.
基于钛的晶格结构因其具有模仿骨样行为和改善植入物性能的潜力,在生物医学工程领域受到了广泛关注。本研究评估了通过粉末床熔融激光束(PBF-LB)制造的仿生Ti64 TPMS Gyroyd和随机晶格结构的性能,重点关注它们在生物医学应用中的体内和体外力学及生物学反应。利用SLM 280 HL打印机,样品展现出对机械完整性至关重要的显著几何精度。该研究强调了通过化学蚀刻实现的显著力学性能和几何精度提升。力学表征显示,增材制造的Gyroid晶格具有最高的弹性模量(3.64 GPa)和屈服强度(200.65 MPa),蚀刻后有所提高(分别为3.62 GPa和219.35 MPa)。随机晶格在蚀刻后的屈服强度值较低(169.81 MPa)。在马模型中的体内分析表明,两种结构均表现出优异 的生物相容性和骨整合,无不良炎症反应。体外推出试验表明,化学蚀刻的Gyroid结构具有最高的抗推出力(1645.407 N)和最大位移(2.754 mm),表明其能量吸收能力卓越(4920.425 mJ)。这些发现强调了微观结构设计和表面处理对植入物功能的关键影响,为通过晶格结构和后处理改善生物医学植入物性能提供了新的见解。