Tayyab Umm-E-Hani, Khan Faiza Babar, Khan Asifullah, Durad Muhammad Hanif, Khan Farrukh Aslam, Ali Aftab
Department of Computer & Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan.
Pattern Recognition Lab, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan.
PeerJ Comput Sci. 2024 Dec 23;10:e2604. doi: 10.7717/peerj-cs.2604. eCollection 2024.
Effective malware detection is critical to safeguarding digital ecosystems from evolving cyber threats. However, the scarcity of labeled training data, particularly for cross-family malware detection, poses a significant challenge. This research proposes a novel architecture ConvNet-6 to be used in Siamese Neural Networks for applying Zero-shot learning to address the issue of data scarcity. The proposed model for malware detection uses the ConvNet-6 architecture even with limited training samples. The proposed model is trained with just one labeled sample per sub-family. We conduct extensive experiments on a diverse dataset featuring Android and Portable Executables' malware families. The model achieves high performance in terms of 82% accuracy on the test dataset, demonstrating its ability to generalize and effectively detect previously unseen malware variants. Furthermore, we examine the model's transferability by testing it on a portable executable malware dataset, despite being trained solely on the Android dataset. Encouragingly, the performance remains consistent. The results of our research showcase the potential of deep convolutional neural network (CNN) in Siamese neural networks for the application of zero-shot learning to detect cross-family malware, even when dealing with minimal labeled training data.
有效的恶意软件检测对于保护数字生态系统免受不断演变的网络威胁至关重要。然而,标记训练数据的稀缺,特别是对于跨家族恶意软件检测而言,构成了重大挑战。本研究提出了一种新颖的架构ConvNet-6,用于暹罗神经网络,以应用零样本学习来解决数据稀缺问题。所提出的恶意软件检测模型即使在训练样本有限的情况下也使用ConvNet-6架构。所提出的模型每个子家族仅使用一个标记样本进行训练。我们在一个包含安卓和可移植可执行文件恶意软件家族的多样化数据集上进行了广泛的实验。该模型在测试数据集上达到了82%的准确率,展示了其泛化能力以及有效检测以前未见过的恶意软件变体的能力。此外,尽管该模型仅在安卓数据集上进行训练,但我们通过在可移植可执行文件恶意软件数据集上进行测试来检验其可迁移性。令人鼓舞的是,性能保持一致。我们的研究结果展示了深度卷积神经网络(CNN)在暹罗神经网络中应用零样本学习来检测跨家族恶意软件的潜力,即使在处理极少标记训练数据的情况下也是如此。