Ramachandran V, Potoyan D A
Department of Chemistry, Iowa State University, Ames, IA 50011.
Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology.
bioRxiv. 2025 Jan 22:2025.01.20.633842. doi: 10.1101/2025.01.20.633842.
RNA molecules are essential in orchestrating the assembly of biomolecular condensates and membraneless compartments in cells. Many condensates form via the association of RNA with proteins containing specific RNA binding motifs. However, recent reports indicate that low-complexity RNA sequences can self-assemble into condensate phases without protein assistance. Divalent cations significantly influence the thermodynamics and dynamics of RNA condensates, which exhibit base-specific lower-critical solution temperatures (LCST). The precise molecular origins of these temperatures remain elusive. In this study, we employ atomistic molecular simulations to elucidate the molecular driving forces governing the temperature-dependent phase behavior of RNA, providing new insights into the origins of LCST. Using RNA tetranucleotides and their chemically modified analogs, we map RNA condensates' equilibrium thermodynamic profiles and structural ensembles across various temperatures and ionic conditions. Our findings reveal that magnesium ions promote LCST behavior by inducing local order-disorder transitions within RNA structures. Consistent with experimental observations, we demonstrate that the thermal stability of RNA condensates follows the Poly(G) > Poly(A) > Poly(C) > Poly(U) order shaped by the interplay of base-stacking and hydrogen bonding interactions. Furthermore, our simulations show that ionic conditions and post-translational modifications can fine-tune RNA self-assembly and modulate condensate physical properties.
RNA分子对于协调细胞中生物分子凝聚物和无膜区室的组装至关重要。许多凝聚物是通过RNA与含有特定RNA结合基序的蛋白质结合而形成的。然而,最近的报道表明,低复杂性RNA序列可以在没有蛋白质帮助的情况下自组装成凝聚相。二价阳离子显著影响RNA凝聚物的热力学和动力学,其表现出碱基特异性的低临界溶解温度(LCST)。这些温度的确切分子起源仍然难以捉摸。在这项研究中,我们采用原子分子模拟来阐明控制RNA温度依赖性相行为的分子驱动力,为LCST的起源提供新的见解。使用RNA四核苷酸及其化学修饰类似物,我们绘制了RNA凝聚物在不同温度和离子条件下的平衡热力学分布图和结构系综。我们的研究结果表明,镁离子通过诱导RNA结构内的局部有序-无序转变来促进LCST行为。与实验观察结果一致,我们证明RNA凝聚物的热稳定性遵循由碱基堆积和氢键相互作用相互作用形成的Poly(G) > Poly(A) > Poly(C) > Poly(U)顺序。此外,我们的模拟表明,离子条件和翻译后修饰可以微调RNA自组装并调节凝聚物的物理性质。