Suppr超能文献

使用SED-ML进行可重复的编目:跨多个模拟引擎验证生物模型。

Using SED-ML for reproducible curation: Verifying BioModels across multiple simulation engines.

作者信息

Smith Lucian, Malik-Sheriff Rahuman S, Nguyen Tung V N, Hermjakob Henning, Karr Jonathan, Shaikh Bilal, Drescher Logan, Moraru Ion I, Schaff James C, Agmon Eran, Patrie Alexander A, Blinov Michael L, Hellerstein Joseph L, May Elebeoba E, Nickerson David P, Gennari John H, Sauro Herbert M

机构信息

Department of Bioengineering, University of Washington, Seattle, WA, USA.

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.

出版信息

bioRxiv. 2025 Jan 20:2025.01.16.633337. doi: 10.1101/2025.01.16.633337.

Abstract

The BioModels Repository contains over 1000 manually curated mechanistic models drawn from published literature, most of which are encoded in the Systems Biology Markup Language (SBML). This community-based standard formally specifies each model, but does not describe the computational experimental conditions to run a simulation. Therefore, it can be challenging to reproduce any given figure or result from a publication with an SBML model alone. The Simulation Experiment Description Markup Language (SED-ML) provides a solution: a standard way to specify exactly how to run a specific experiment that corresponds to a specific figure or result. BioModels was established years before SED-ML, and both systems evolved over time, both in content and acceptance. Hence, only about half of the entries in BioModels contained SED-ML files, and these files reflected the version of SED-ML that was available at the time. Additionally, almost all of these SED-ML files had at least one minor mistake that made them invalid. To make these models and their results more reproducible, we report here on our work updating, correcting and providing new SED-ML files for 1055 curated mechanistic models in BioModels. In addition, because SED-ML is implementation-independent, it can be used for , demonstrating that results hold across multiple simulation engines. Here, we use a wrapper architecture for interpreting SED-ML, and report verification results across five different ODE-based biosimulation engines. Our work with SED-ML and the BioModels collection aims to improve the utility of these models by making them more reproducible and credible.

摘要

生物模型库包含1000多个从已发表文献中精心挑选的机理模型,其中大部分以系统生物学标记语言(SBML)编码。这种基于社区的标准正式规定了每个模型,但没有描述运行模拟的计算实验条件。因此,仅使用SBML模型重现出版物中的任何给定图表或结果可能具有挑战性。模拟实验描述标记语言(SED-ML)提供了一种解决方案:一种精确指定如何运行与特定图表或结果相对应的特定实验的标准方法。生物模型库在SED-ML之前几年就已建立,这两个系统都随着时间的推移在内容和接受度方面不断发展。因此,生物模型库中只有大约一半的条目包含SED-ML文件,并且这些文件反映了当时可用的SED-ML版本。此外,几乎所有这些SED-ML文件都至少有一个小错误,使其无效。为了使这些模型及其结果更具可重复性,我们在此报告我们为生物模型库中1055个精心挑选的机理模型更新、纠正并提供新的SED-ML文件的工作。此外,由于SED-ML与实现无关,它可用于 ,表明结果在多个模拟引擎中都成立。在这里,我们使用一种包装器架构来解释SED-ML,并报告在五个不同的基于常微分方程的生物模拟引擎上的验证结果。我们在SED-ML和生物模型库方面的工作旨在通过使这些模型更具可重复性和可信度来提高其效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e06/12233523/dd95d9e4fcf3/nihpp-2025.01.16.633337v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验