Suppr超能文献

纺锤体组装与位置检查点的动力学:将分子机制与计算模型相结合

Dynamics of spindle assembly and position checkpoints: Integrating molecular mechanisms with computational models.

作者信息

Ibrahim Bashar

机构信息

Department of Mathematics & Natural Sciences and Centre for Applied Mathematics & Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait.

Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, Jena, 07743, Germany.

出版信息

Comput Struct Biotechnol J. 2025 Jan 10;27:321-332. doi: 10.1016/j.csbj.2024.12.021. eCollection 2025.

Abstract

Mitotic checkpoints orchestrate cell division through intricate molecular networks that ensure genomic stability. While experimental research has uncovered key aspects of checkpoint function, the complexity of protein interactions and spatial dynamics necessitates computational modeling for a deeper, system-level understanding. This review explores mathematical frameworks-from ordinary differential equations to stochastic simulations, which reveal checkpoint dynamics across multiple scales, encompassing models ranging from simple protein interactions to whole-system simulations with thousands of parameters. These approaches have elucidated fundamental properties, including bistable switches driving spindle assembly checkpoint (SAC) activation, spatial organization principles underlying spindle position checkpoint (SPOC) signaling, and critical system-level features ensuring checkpoint robustness. This study evaluates diverse modeling approaches, from rule-based models to chemical organization theory, highlighting their successful application in predicting protein localization patterns and checkpoint response dynamics validated through live-cell imaging. Contemporary challenges persist in integrating spatial and temporal scales, refining parameter estimation, and enhancing spatial modeling fidelity. However, recent advances in single-molecule imaging, data-driven algorithms, and machine learning techniques, particularly deep learning for parameter optimization, present transformative opportunities for improving model accuracy and predictive power. By bridging molecular mechanisms with system-level behaviors through validated computational frameworks, this review offers a comprehensive perspective on the mathematical modeling of cell cycle control, with practical implications for cancer research and therapeutic development.

摘要

有丝分裂检查点通过复杂的分子网络来协调细胞分裂,这些网络确保基因组的稳定性。虽然实验研究已经揭示了检查点功能的关键方面,但蛋白质相互作用和空间动态的复杂性需要通过计算建模来进行更深入的系统层面理解。本综述探讨了从常微分方程到随机模拟的数学框架,这些框架揭示了多个尺度上的检查点动态,涵盖了从简单蛋白质相互作用到具有数千个参数的全系统模拟等各种模型。这些方法已经阐明了一些基本特性,包括驱动纺锤体组装检查点(SAC)激活的双稳态开关、纺锤体位置检查点(SPOC)信号传导背后的空间组织原则,以及确保检查点稳健性的关键系统层面特征。本研究评估了从基于规则的模型到化学组织理论等各种建模方法,强调了它们在预测通过活细胞成像验证的蛋白质定位模式和检查点反应动态方面的成功应用。在整合空间和时间尺度、完善参数估计以及提高空间建模保真度方面,当代挑战依然存在。然而,单分子成像、数据驱动算法和机器学习技术,特别是用于参数优化的深度学习的最新进展,为提高模型准确性和预测能力带来了变革性机遇。通过经过验证的计算框架将分子机制与系统层面行为联系起来,本综述提供了关于细胞周期控制数学建模的全面视角,对癌症研究和治疗开发具有实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e97/11782880/14998cc1ca3d/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验