Suppr超能文献

用于心电图信号分析的卷积自动编码器框架。

A convolutional autoencoder framework for ECG signal analysis.

作者信息

Lomoio Ugo, Vizza Patrizia, Giancotti Raffaele, Petrolo Salvatore, Flesca Sergio, Boccuto Fabiola, Guzzi Pietro Hiram, Veltri Pierangelo, Tradigo Giuseppe

机构信息

Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy.

DIMES, University of Calabria, Rende, Italy.

出版信息

Heliyon. 2025 Jan 2;11(2):e41517. doi: 10.1016/j.heliyon.2024.e41517. eCollection 2025 Jan 30.

Abstract

Electrocardiographic (ECG) signals are used to evaluate heart activity and to identify disease-related anomalies. Reliable support systems are useful for analyzing ECG signals, for instance, in long-term data acquisition and evaluation (e.g., 24-hour holter recording) or to support physicians in reading ECGs. Analysis of time varying signals may be done by using autoencoders (AEs) deep neural networks. AE specialized for signal data, named Convolutional Autoencoder (CAE), showed the best performances in the analysis of ECG signals. This paper presents a CAE-based framework for ECG signal analysis and anomaly identification. The trained phase is performed on synthetic data signals. The trained neural network obtained is used for the detection of anomalies in ECG signals. The trained framework has been tested on 12 lead ECG signals on a benchmark dataset and applied in scenarios where anomalies are related to cardiological risks and pathologies. The results show interesting results in automatic anomaly detection to support physicians in the decision process. The results show that the CAE-based framework is able to identify anomalies in ECG signals with a ROC AUC of 97.82% on simulated test set and a ROC AUC of 99.75% using a real test set. Finally, the proposed method has been enriched by means of reconstruction error based explainability modules and time-windows based preprocessing modules. Explainability results have been validated using abnormalities annotated by a cardiologist as ground truth and compared with explainations results. System with both code and data, is available at https://github.com/UgoLomoio/ECG_DSS_CAE.

摘要

心电图(ECG)信号用于评估心脏活动并识别与疾病相关的异常情况。可靠的支持系统有助于分析ECG信号,例如在长期数据采集和评估(如24小时动态心电图记录)中,或辅助医生解读心电图。对随时间变化的信号进行分析可以通过使用自动编码器(AE)深度神经网络来完成。专门用于信号数据的AE,即卷积自动编码器(CAE),在ECG信号分析中表现出最佳性能。本文提出了一种基于CAE的ECG信号分析和异常识别框架。训练阶段在合成数据信号上进行。所获得的经过训练的神经网络用于检测ECG信号中的异常情况。经过训练的框架已在基准数据集上的12导联ECG信号上进行测试,并应用于异常情况与心脏风险和病理相关的场景中。结果在自动异常检测方面显示出有趣的结果,以支持医生进行决策。结果表明,基于CAE的框架能够在模拟测试集上以97.82%的ROC曲线下面积(ROC AUC)和在真实测试集上以99.75%的ROC AUC识别ECG信号中的异常情况。最后,所提出的方法通过基于重建误差的可解释性模块和基于时间窗口的预处理模块得到了丰富。可解释性结果已使用心脏病专家标注为真实情况的异常进行验证,并与解释结果进行比较。带有代码和数据的系统可在https://github.com/UgoLomoio/ECG_DSS_CAE上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb2/11782975/69ee2b5767eb/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验