Suppr超能文献

使用弹性网络模型将AlphaFold2预测模型灵活拟合到冷冻电镜密度图:一种方法验证

Flexible fitting of AlphaFold2-predicted models to cryo-EM density maps using elastic network models: a methodical affirmation.

作者信息

Alshammari Maytha, He Jing, Wriggers Willy

机构信息

Department of Computer Science, Old Dominion University, Norfolk, VA 23529, United States.

Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, United States.

出版信息

Bioinform Adv. 2024 Nov 18;5(1):vbae181. doi: 10.1093/bioadv/vbae181. eCollection 2025.

Abstract

MOTIVATION

This study investigates the flexible refinement of AlphaFold2 models against corresponding cryo-electron microscopy (cryo-EM) maps using normal modes derived from elastic network models (ENMs) as basis functions for displacement. AlphaFold2 generally predicts highly accurate structures, but 18 of the 137 models of isolated chains exhibit a TM-score below 0.80. We achieved a significant improvement in four of these deviating structures and used them to systematically optimize the parameters of the ENM motion model.

RESULTS

We successfully refined four AlphaFold2 models with notable discrepancies: lipid-preserved respiratory supercomplex (TM-score increased from 0.52 to 0.69), flagellar L-ring protein (TM-score increased from 0.53 to 0.64), cation diffusion facilitator YiiP (TM-score increased from 0.76 to 0.83), and pilus (TM-score increased from 0.77 to 0.85). We explored the effect of three different mode ranges (modes 1-9, 7-9, and 1-12), masked or box-cropped density maps, numerical optimization methods, and two similarity measures (Pearson correlation and inner product). The best results were achieved for the widest mode range (modes 1-12), masked maps, inner product, and local Powell optimization. These optimal parameters were implemented in the flexible fitting utility elforge.py in version 1.4 of our Python-based ModeHunter package.

AVAILABILITY AND IMPLEMENTATION

https://modehunter.biomachina.org.

摘要

动机

本研究使用从弹性网络模型(ENM)导出的正常模式作为位移的基函数,研究了针对相应冷冻电子显微镜(cryo-EM)图谱对AlphaFold2模型进行灵活优化。AlphaFold2通常能预测出高度准确的结构,但137个孤立链模型中的18个显示TM分数低于0.80。我们在其中四个偏差结构上取得了显著改进,并利用它们系统地优化了ENM运动模型的参数。

结果

我们成功优化了四个存在显著差异的AlphaFold2模型:脂质保留呼吸超复合物(TM分数从0.52提高到0.69)、鞭毛L环蛋白(TM分数从0.53提高到0.64)、阳离子扩散促进剂YiiP(TM分数从0.76提高到0.83)和菌毛(TM分数从0.77提高到0.85)。我们探讨了三种不同模式范围(模式1 - 9、7 - 9和1 - 12)、掩码或框裁剪密度图、数值优化方法以及两种相似性度量(皮尔逊相关和内积)的影响。对于最宽的模式范围(模式1 - 12)、掩码图、内积和局部鲍威尔优化,取得了最佳结果。这些最优参数已在我们基于Python的ModeHunter包1.4版本的灵活拟合实用程序elforge.py中实现。

可用性和实现方式

https://modehunter.biomachina.org。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b1/11783307/645e6b29aab8/vbae181f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验