Suppr超能文献

针对抗生素发现的基于 AlphaFold 赋能的分子对接预测进行基准测试。

Benchmarking AlphaFold-enabled molecular docking predictions for antibiotic discovery.

机构信息

Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Mol Syst Biol. 2022 Sep;18(9):e11081. doi: 10.15252/msb.202211081.

Abstract

Efficient identification of drug mechanisms of action remains a challenge. Computational docking approaches have been widely used to predict drug binding targets; yet, such approaches depend on existing protein structures, and accurate structural predictions have only recently become available from AlphaFold2. Here, we combine AlphaFold2 with molecular docking simulations to predict protein-ligand interactions between 296 proteins spanning Escherichia coli's essential proteome, and 218 active antibacterial compounds and 100 inactive compounds, respectively, pointing to widespread compound and protein promiscuity. We benchmark model performance by measuring enzymatic activity for 12 essential proteins treated with each antibacterial compound. We confirm extensive promiscuity, but find that the average area under the receiver operating characteristic curve (auROC) is 0.48, indicating weak model performance. We demonstrate that rescoring of docking poses using machine learning-based approaches improves model performance, resulting in average auROCs as large as 0.63, and that ensembles of rescoring functions improve prediction accuracy and the ratio of true-positive rate to false-positive rate. This work indicates that advances in modeling protein-ligand interactions, particularly using machine learning-based approaches, are needed to better harness AlphaFold2 for drug discovery.

摘要

药物作用机制的有效识别仍然是一个挑战。计算对接方法已被广泛用于预测药物结合靶点;然而,这些方法依赖于现有的蛋白质结构,而准确的结构预测直到最近才由 AlphaFold2 提供。在这里,我们将 AlphaFold2 与分子对接模拟相结合,预测了 296 种蛋白质与大肠杆菌必需蛋白质组之间的蛋白 - 配体相互作用,分别为 218 种活性抗菌化合物和 100 种非活性化合物,表明广泛存在化合物和蛋白质的混杂性。我们通过测量用每种抗菌化合物处理的 12 种必需蛋白质的酶活性来评估模型性能。我们证实了广泛的混杂性,但发现平均接收者操作特征曲线下的面积(auROC)为 0.48,表明模型性能较弱。我们证明,使用基于机器学习的方法重新评分对接构象可以提高模型性能,导致平均 auROC 高达 0.63,并且重新评分函数的集合可以提高预测准确性和真阳性率与假阳性率的比值。这项工作表明,需要在建模蛋白质 - 配体相互作用方面取得进展,特别是使用基于机器学习的方法,以便更好地利用 AlphaFold2 进行药物发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa23/9446081/7c9233a79370/MSB-18-e11081-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验