Suppr超能文献

使用经济高效的Xception架构对小麦锈病进行自动检测和严重程度预测。

Automated Detection and Severity Prediction of Wheat Rust Using Cost-Effective Xception Architecture.

作者信息

Syeda Fouzia, Jameel Amina, Alani Noor, Humayun Mamoona, Alwakid Ghadah Naif

机构信息

Australian Plant Phenomics, University of Adelaide, Adelaide, South Australia, Australia.

Department of Computer Engineering, Bahria University, Islamabad, Pakistan.

出版信息

Plant Cell Environ. 2025 Jun;48(6):4126-4139. doi: 10.1111/pce.15413. Epub 2025 Feb 3.

Abstract

Wheat crop production is under constant threat from leaf and stripe rust, an airborne fungal disease caused by the pathogen Puccinia triticina. Early detection and efficient crop phenotyping are crucial for managing and controlling the spread of this disease in susceptible wheat varieties. Current detection methods are predominantly manual and labour-intensive. Traditional strategies such as cultivating resistant varieties, applying fungicides and practicing good agricultural techniques often fall short in effectively identifying and responding to wheat rust outbreaks. To address these challenges, we propose an innovative computer vision-based disease severity prediction pipeline. Our approach utilizes a deep learning-based classifier to differentiate between healthy and rust-infected wheat leaves. Upon identifying an infected leaf, we apply Grabcut-based segmentation to isolate the foreground mask. This mask is then processed in the CIELAB color space to distinguish leaf rust stripes and spores. The disease severity ratio is calculated to measure the extent of infection on each test leaf. This paper introduces a ground-breaking disease severity prediction method, offering a low-cost, accessible and automated solution for wheat rust disease screening in field conditions using digital colour images. Our approach represents a significant advancement in crop disease management, promising timely interventions and better control measures for wheat rust.

摘要

小麦作物生产一直受到叶锈病和条锈病的威胁,这是一种由小麦叶锈菌病原体引起的空气传播真菌病害。早期检测和高效的作物表型分析对于管理和控制这种病害在易感小麦品种中的传播至关重要。目前的检测方法主要是人工操作且劳动强度大。传统策略,如种植抗病品种、施用杀菌剂和采用良好的农业技术,在有效识别和应对小麦锈病爆发方面往往效果不佳。为应对这些挑战,我们提出了一种基于计算机视觉的创新病害严重程度预测流程。我们的方法利用基于深度学习的分类器来区分健康小麦叶和感染锈病的小麦叶。识别出感染叶片后,我们应用基于Grabcut的分割方法来分离前景掩码。然后在CIELAB颜色空间中对该掩码进行处理,以区分叶锈条纹和孢子。计算病害严重程度比率以测量每片测试叶片的感染程度。本文介绍了一种开创性的病害严重程度预测方法,为利用数字彩色图像在田间条件下进行小麦锈病筛查提供了一种低成本、易获取且自动化的解决方案。我们的方法代表了作物病害管理方面取得的重大进展,有望及时进行干预并采取更好的小麦锈病控制措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d445/12050390/5c0dbd34cf89/PCE-48-4126-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验