Yadav Jitendra Kumar, Sinha Shruti, Shukla Hariom, Singh Ankur, Sahu Tanmaya Kumar, Jha Shailendra Kumar, Kumari Jyoti, Verma Manjusha, Kumar Sundeep, Singh Rakesh, Singh Gyanendra Pratap, Singh Amit Kumar
ICAR-National Bureau of Plant Genetic Resources, New Delhi, India.
Graduate School, Indian Agricultural Research Institute, New Delhi, India.
BMC Plant Biol. 2025 Mar 31;25(1):406. doi: 10.1186/s12870-025-06330-2.
Leaf rust, caused by Puccinia triticina Eriks (Pt) is a major threat to wheat cultivation worldwide. The rapid evolution of this pathogen has led to the emergence of new virulent strains that can overcome the resistance of commonly cultivated wheat varieties. To address this threat, continuous monitoring of leaf rust pathotypes is conducted in wheat-growing regions across the world. This approach helps prioritize the development and deployment of resistant cultivars, as well as the implementation of other effective control measures against the prevailing races. The key wheat leaf rust pathotypes in India include 77-5 (121R63-1), 77-6 (121R55-1), 77-9 (121R60-1), 12-5 (29R45), and 104 (17R23). Among these pathotypes, 77-5 (121R63-1) and 77-9 (121R60-1) are the most prevalent since 2016. As virulent pathotypes continue to evolve and adapt, there is an urgent need to continually explore the vast germplasm repositories of wheat and its related species to identify novel genetic resources and genes that confer resistance to these evolving leaf rust pathotypes. Therefore, the present study aims to identify genes and genomic regions responsible for leaf rust resistance against prevalent pathotypes in India, focusing on a subset of the Global Durum Wheat Panel, which includes genotypes from various tetraploid wheat species.
This study revealed wide variation in seedling-stage resistance among 189 tetraploid wheat accessions against five prevalent leaf rust pathotypes in India namely, 77-5 (121R63-1), 77-6 (121R55-1), 77-9 (121R60-1), 12-5 (29R45) and 104 (17R23). Approximately 45% of the population exhibited immune/highly resistant to moderately resistant responses to pathotypes 77-5, 77-6 and 104, while around 23-27% showed similar levels of resistance to pathotypes 77-9 and 12-5. A genome-wide association study using six multi-locus models identified 88 significantly associated quantitative trait nucleotides (QTNs) across the five leaf rust pathotypes. Among these, 22 QTNs were considered reliable, including four for pathotype 77-5, six for 12-5, three for 77-9, seven for 104, and two for 77-6. Among the 22 reliable QTNs, 10 coincided with the rust resistance regions reported in previous studies, whereas 12 appeared to be novel. Further investigations of the regions flanking all 88 QTNs revealed 300 genes, including 62 associated with disease resistance or defense responses. In silico expression analysis of these defense-related genes revealed two nucleotide-binding site-leucine-rich repeat genes: one on chromosome 6B (TRITD6Bv1G224600) near QTN RAC875_c35430_373, and another on chromosome 6A (TRITD6Av1G225060) in the vicinity of QTN Excalibur_c77841_224 with significantly higher levels of expression in the leaf-resistant genotype during the early hours of Pt infection. Therefore, these two genes could be potential candidates for resistance to leaf rust in tetraploid wheat germplasm.
Our study provides a comprehensive understanding of the genetic basis underlying leaf rust resistance in a diverse tetraploid wheat germplasm panel. It has also revealed novel candidate genomic regions for leaf rust resistance. These genomic regions represent important targets for inclusion in marker-assisted breeding initiatives, aimed at fostering durable resistance against leaf rust disease.
由小麦叶锈菌(Puccinia triticina Eriks,简称Pt)引起的叶锈病是全球小麦种植面临的主要威胁。这种病原体的快速进化导致了新的毒性菌株的出现,这些菌株能够克服常见栽培小麦品种的抗性。为应对这一威胁,全球小麦种植区持续对叶锈病致病型进行监测。这种方法有助于确定抗性品种的研发和推广优先级,以及针对优势小种实施其他有效防治措施。印度主要的小麦叶锈病致病型包括77-5(121R63-1)、77-6(121R55-1)、77-9(121R60-1)、12-5(29R45)和104(17R23)。在这些致病型中,77-5(121R63-1)和77-9(121R60-1)自2016年以来最为普遍。随着毒性致病型不断进化和适应,迫切需要持续探索小麦及其近缘物种的大量种质资源库,以鉴定赋予对这些不断进化的叶锈病致病型抗性的新遗传资源和基因。因此,本研究旨在鉴定印度常见致病型叶锈病抗性相关的基因和基因组区域,重点关注全球硬粒小麦面板的一个子集,该子集包括来自各种四倍体小麦物种的基因型。
本研究揭示了189份四倍体小麦材料在苗期对印度5种常见叶锈病致病型,即77-5(121R63-1)、77-6(121R55-1)、77-9(121R60-1)、12-5(29R45)和104(17R23)的抗性存在广泛差异。约45%的群体对致病型77-5、77-6和104表现出免疫/高抗至中抗反应,而约23%-27%的群体对致病型77-9和12-5表现出相似水平的抗性。使用六种多位点模型进行的全基因组关联研究在五种叶锈病致病型中鉴定出88个显著相关的数量性状核苷酸(QTN)。其中,22个QTN被认为是可靠的,包括致病型77-5的4个、12-5的6个、77-9的3个、104的7个和77-6的2个。在这22个可靠的QTN中,10个与先前研究报道的抗锈病区域重合,而12个似乎是新发现的。对所有88个QTN侧翼区域的进一步研究揭示了300个基因,其中62个与抗病性或防御反应相关。对这些防御相关基因的电子表达分析揭示了两个核苷酸结合位点富含亮氨酸重复序列基因:一个位于6B染色体上(TRITD6Bv1G224600),靠近QTN RAC875_c35430_373;另一个位于6A染色体上(TRITD6Av1G225060),靠近QTN Excalibur_c77841_224,在Pt感染早期,抗性基因型叶片中的表达水平显著更高。因此,这两个基因可能是四倍体小麦种质中抗叶锈病的潜在候选基因。
我们的研究全面了解了不同四倍体小麦种质面板中叶锈病抗性的遗传基础。它还揭示了新的叶锈病抗性候选基因组区域。这些基因组区域是标记辅助育种计划中的重要目标,旨在培育对叶锈病的持久抗性。