Suppr超能文献

基于圆锥角膜中失巢凋亡相关基因表达的分子亚型鉴定及潜在药物预测

Molecular Subtype Identification and Potential Drug Prediction Based on Anoikis-Related Genes Expression in Keratoconus.

作者信息

Jiang Zhixin, Zhang Boyang, Jia Shichong, Yuan Xiaoyong

机构信息

Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China.

School of Medicine, Nankai University, Tianjin, China.

出版信息

Invest Ophthalmol Vis Sci. 2025 Feb 3;66(2):3. doi: 10.1167/iovs.66.2.3.

Abstract

PURPOSE

Anoikis is a special apoptosis accompanied by the loss of extracellular matrix (ECM) environment and the decomposition of ECM is an important process in the occurrence of keratoconus (KC). This study aims to describe the expression profile of anoikis-related genes (ARGs) in KC samples, identify differentially expressed genes (DEGs), characterize the biological functions and immune characteristics of different molecular subtypes of KC and predict potential drugs based on the construction of a co-expression network.

METHODS

First, we identified molecular subtypes by optimal clustering K based on the expression profile of ARGs in the KC dataset and analyzed the differences of functional and immune characteristics. Then a weighted gene co-expression network was constructed based on cluster analysis to obtain hub genes and protein-protein interaction network was constructed to analyze hub nodes and predict potential node-targeting drugs.

RESULTS

By comparing the expression profile between disease and normal samples, we found that there were significant differences in ARGs such as BCL2, CAV1, and CEACAM5. Consistent cluster analysis identified two definite clusters on the basis of ARGs expression difference. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis showed that DEGs were enriched significantly in pathways like ECM receptor interaction, chemokine signal, notch signal, focal adhesion, and functional sets like proteolysis, anoikis, regulation of natural killer and T-cell proliferation. CIBERSORT calculation showed that there were significant differences between the two subtypes on immune cell infiltration (monocytes and plasma) and immune molecules (CCL11, CCL14, HLA-A, HLA-B, and so on). Then, co-expression network was constructed based on cluster phenotype, 5202 genes were selected as hub genes, and 321 HubDEGs were obtained after intersection with significant DEGs. Seven hub nodes, EIF4G1, KHSRP, PABPC1, POLR2A, PTBP1, RPS19, and SMARCA4, were identified and matched drugs or small molecular compounds. Insulin and dexamethasone were identified as potential target drugs.

CONCLUSIONS

We revealed the differential expression of ARGs in KC samples, and identified two distinct subtypes that showed significant differences in biological function and immune infiltration. The identification of hub gene nodes elucidated their therapeutic value on predicted potential drugs.

摘要

目的

失巢凋亡是一种特殊的细胞凋亡,伴随着细胞外基质(ECM)环境的丧失,而ECM的分解是圆锥角膜(KC)发生的一个重要过程。本研究旨在描述KC样本中失巢凋亡相关基因(ARGs)的表达谱,鉴定差异表达基因(DEGs),表征KC不同分子亚型的生物学功能和免疫特征,并基于共表达网络的构建预测潜在药物。

方法

首先,我们基于KC数据集中ARGs的表达谱通过最优聚类K鉴定分子亚型,并分析功能和免疫特征的差异。然后基于聚类分析构建加权基因共表达网络以获得枢纽基因,并构建蛋白质-蛋白质相互作用网络以分析枢纽节点并预测潜在的节点靶向药物。

结果

通过比较疾病样本和正常样本的表达谱,我们发现BCL2、CAV1和CEACAM5等ARGs存在显著差异。基于ARGs表达差异的一致性聚类分析确定了两个明确的聚类。京都基因与基因组百科全书(KEGG)和基因本体(GO)富集分析表明DEGs在ECM受体相互作用、趋化因子信号、Notch信号、粘着斑等通路以及蛋白水解、失巢凋亡、自然杀伤细胞和T细胞增殖调节等功能集中显著富集。CIBERSORT计算表明,两种亚型在免疫细胞浸润(单核细胞和血浆)和免疫分子(CCL11、CCL14、HLA-A、HLA-B等)方面存在显著差异。然后,基于聚类表型构建共表达网络,选择5202个基因作为枢纽基因,与显著DEGs相交后获得321个枢纽差异表达基因。鉴定出7个枢纽节点,即EIF4G1、KHSRP、PABPC1、POLR2A、PTBP1、RPS19和SMARCA4,并匹配了药物或小分子化合物。胰岛素和地塞米松被鉴定为潜在的靶向药物。

结论

我们揭示了KC样本中ARGs的差异表达,并鉴定出两种在生物学功能和免疫浸润方面存在显著差异的不同亚型。枢纽基因节点的鉴定阐明了它们对预测潜在药物的治疗价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0622/11798338/2f9e3d513a06/iovs-66-2-3-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验