Choi Joon Yul, Kim Doo Eun, Kim Sung Jin, Choi Hannuy, Yoo Tae Keun
Department of Biomedical Engineering, Yonsei University, Wonju, South Korea.
Kim Eye Clinic, Cheongju, Chungcheongbukdo, South Korea.
NPJ Digit Med. 2025 Feb 3;8(1):82. doi: 10.1038/s41746-025-01487-4.
This study demonstrates the potential of multimodal large language models in calculating safety indicators and predicting contraindications for laser vision correction. ChatGPT-4 effectively analyzed ocular data, calculated key indicators, generated calculator codes, and outperformed traditional machine learning models and indicators in handling unstructured data and corneal topography. Its modality-independent system enabled efficient and accurate data analysis. Despite longer processing times, ChatGPT-4's performance highlights its potential as a decision-support tool, offering advancements in improving safety.
本研究证明了多模态大语言模型在计算安全指标和预测激光视力矫正禁忌症方面的潜力。ChatGPT-4有效地分析了眼部数据,计算了关键指标,生成了计算器代码,并且在处理非结构化数据和角膜地形图方面优于传统机器学习模型和指标。其独立于模态的系统实现了高效且准确的数据分析。尽管处理时间较长,但ChatGPT-4的性能凸显了其作为决策支持工具的潜力,为提高安全性带来了进步。