Chang Xiaoya, Zhang Zhongrong, Sun Jianguo, Lin Kang, Song Ping'an
School of Mathematics and Physics, Lanzhou Jiaotong University, No. 88 Anning West Road, Anning District, Lanzhou City, Gansu Province, China.
Artificial Intelligence, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China.
Med Biol Eng Comput. 2025 Feb 4. doi: 10.1007/s11517-025-03303-3.
Breast cancer image classification remains a challenging task due to the high-resolution nature of pathological images and their complex feature distributions. Graph neural networks (GNNs) offer promising capabilities to capture local structural information but often suffer from limited generalization and reliance on shortcut features. This study proposes a novel causal discovery attention-based graph neural network (CDA-GNN) model. The model converts high-resolution image data into graph data using superpixel segmentation and employs a causal attention mechanism to identify and utilize key causal features. A backdoor adjustment strategy further disentangles causal features from shortcut features, enhancing model interpretability and robustness. Experimental evaluations on the 2018 BACH breast cancer image dataset demonstrate that CDA-GNN achieves a classification accuracy of 86.36%. Additional metrics, including F1-score and ROC, validate the superior performance and generalization of the proposed approach. The CDA-GNN model, with its powerful automated cancer image analysis capabilities and strong interpretability, provides an effective tool for clinical applications. It significantly reduces the workload of healthcare professionals while facilitating the early detection and diagnosis of breast cancer, thereby improving diagnostic efficiency and accuracy.
由于病理图像的高分辨率特性及其复杂的特征分布,乳腺癌图像分类仍然是一项具有挑战性的任务。图神经网络(GNN)具有捕获局部结构信息的潜力,但往往存在泛化能力有限以及依赖捷径特征的问题。本研究提出了一种基于因果发现注意力的新型图神经网络(CDA-GNN)模型。该模型使用超像素分割将高分辨率图像数据转换为图数据,并采用因果注意力机制来识别和利用关键因果特征。一种后门调整策略进一步将因果特征与捷径特征分离,增强了模型的可解释性和鲁棒性。在2018年BACH乳腺癌图像数据集上的实验评估表明,CDA-GNN的分类准确率达到了86.36%。包括F1分数和ROC在内的其他指标验证了所提出方法的卓越性能和泛化能力。CDA-GNN模型凭借其强大的自动癌症图像分析能力和较强的可解释性,为临床应用提供了一种有效的工具。它显著减轻了医护人员的工作量,同时有助于乳腺癌的早期检测和诊断,从而提高了诊断效率和准确性。