Harvard Medical School, Boston, MA, USA; National University of Singapore, Kent Ridge, Singapore.
The Pennsylvania State University, University Park, PA, USA.
J Anxiety Disord. 2024 Mar;102:102825. doi: 10.1016/j.janxdis.2024.102825. Epub 2024 Jan 5.
Precision medicine methods (machine learning; ML) can identify which clients with generalized anxiety disorder (GAD) benefit from mindfulness ecological momentary intervention (MEMI) vs. self-monitoring app (SM). We used randomized controlled trial data of MEMI vs. SM for GAD (N = 110) and tested three ML models to predict one-month follow-up reliable improvement in GAD severity, perseverative cognitions (PC), trait mindfulness (TM), and executive function (EF). Eleven baseline predictors were tested regarding differential reliable change from MEMI vs. SM (age, sex, race, EF errors, inhibitory dyscontrol, set-shifting deficits, verbal fluency, working memory, GAD severity, TM, PC). The final top five prescriptive predictor models of all outcomes performed well (AUC = .752 .886). The following variables predicted better outcome from MEMI vs. SM: Higher GAD severity predicted more GAD improvement but less EF improvement. Elevated PC, inhibitory dyscontrol, and verbal dysfluency predicted better improvement in most outcomes. Greater set-shifting and TM predicted stronger improvements in GAD symptoms and TM. Older age predicted more alleviation of GAD and PC symptoms. Women exhibited more enhancements in trait mindfulness and EF than men. White individuals benefitted more than non-White. PC, TM, EF, and sociodemographic data might help predictive models optimize intervention selection for GAD.
精准医学方法(机器学习;ML)可识别出哪些广泛性焦虑症(GAD)患者从正念生态即时干预(MEMI)中受益,而哪些患者从自我监测应用程序(SM)中受益。我们使用 MEMI 与 SM 治疗 GAD 的随机对照试验数据(N=110),并测试了三个 ML 模型,以预测 GAD 严重程度、持续认知(PC)、特质正念(TM)和执行功能(EF)的一个月随访可靠改善。针对 MEMI 与 SM 的可靠变化,测试了 11 个基线预测因子(年龄、性别、种族、EF 错误、抑制失控、转换缺陷、言语流畅性、工作记忆、GAD 严重程度、TM、PC)。所有结果的最终前五个规范性预测模型表现良好(AUC=.752.886)。以下变量可预测 MEMI 与 SM 的治疗效果:GAD 严重程度越高,GAD 改善越明显,EF 改善越不明显。PC、抑制失控和言语不流畅程度越高,大多数结果改善越好。转换和 TM 程度越高,GAD 症状和 TM 改善越明显。年龄越大,GAD 和 PC 症状缓解越明显。女性的特质正念和 EF 改善程度强于男性。白人比非白人受益更多。PC、TM、EF 和社会人口统计学数据可能有助于预测模型优化 GAD 的干预选择。