Suppr超能文献

一种自适应分离和提取轮毂电机轴承复合故障特征的新方法。

A novel approach for adaptively separating and extracting compound fault features of the in-wheel motor bearing.

作者信息

Tao Yukun, Ge Chun, Feng Han, Xue Hongtao, Yao Mingyu, Tang Haihong, Liao Zhiqiang, Chen Peng

机构信息

School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Laboratory on Mobility Equipment and Artificial Intelligence for IT Operations, Zhenjiang 212013, China.

International College of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.

出版信息

ISA Trans. 2025 Apr;159:337-351. doi: 10.1016/j.isatra.2025.01.042. Epub 2025 Jan 27.

Abstract

For compound fault detection of in-wheel motor bearings, this paper proposes a novel approach to adaptively separate multi-source signals and extract compound fault features. Building upon blind source separation (BSS), this approach integrates blind deconvolution to address the challenge of extracting weak features. To resolve the undetermined condition of BSS and enhance feature expression, an adaptive signal reconstruction strategy based on local mean decomposition is proposed. Non-negative matrix factorization, a commonly used BSS method, is refined to suit practical applications by adopting the Itakura-Saito distance and the sparse constraint. Then, fault source signals are adaptively identified based on the proposed envelope spectrum peak factor. By introducing a new waveform extension strategy to effectively reduce the endpoint effect, multipoint optimal minimum entropy deconvolution adjusted is improved and used to enhance and extract weak features. Simulation and experimental results validate the effectiveness and robustness of the proposed approach across various stable working conditions and different types of compound faults.

摘要

针对轮毂电机轴承的复合故障检测,本文提出了一种自适应分离多源信号并提取复合故障特征的新方法。该方法基于盲源分离(BSS),集成盲反卷积以应对提取微弱特征的挑战。为解决BSS的不确定性条件并增强特征表达,提出了一种基于局部均值分解的自适应信号重构策略。通过采用伊塔库拉-斋藤距离和稀疏约束,对常用的BSS方法非负矩阵分解进行改进以适应实际应用。然后,基于所提出的包络谱峰值因子自适应识别故障源信号。通过引入一种新的波形扩展策略有效降低端点效应,改进并使用多点最优最小熵反卷积来增强和提取微弱特征。仿真和实验结果验证了该方法在各种稳定工况和不同类型复合故障下的有效性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验