Suppr超能文献

2016 - 2019年通过大型中西部医疗系统的电子健康记录确定的莱姆病流行病学

Epidemiology of Lyme Disease as Identified Through Electronic Health Records in a Large Midwestern Health System, 2016-2019.

作者信息

Kugeler Kiersten J, Scotty Erica, Hinckley Alison F, Hook Sarah A, Nawrocki Courtney C, Nikolai Anne M, Linz Alexandra M, Meece Jennifer, Schotthoefer Anna M

机构信息

Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, Colorado, USA.

Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, Wisconsin, USA.

出版信息

Open Forum Infect Dis. 2025 Jan 7;12(2):ofae758. doi: 10.1093/ofid/ofae758. eCollection 2025 Feb.

Abstract

BACKGROUND

Lyme disease is the most common vector-borne disease in the United States; however, its frequency is not reliably measured through surveillance. Electronic health records (EHR) might capture the frequency and characteristics of Lyme disease cases more accurately. We queried EHR from 1 health system to describe the epidemiology of Lyme disease cases in Wisconsin during 2016-2019.

METHODS

Within a cohort of persons evaluated for Lyme disease, we applied a Lyme disease case definition based on first-line antibiotics within 14 days of a Lyme disease diagnosis code or test order or on the same day as a related keyword in clinical notes. We compared characteristics of cases to those of cases reported through surveillance and reviewed medical charts to assess case definition validity.

RESULTS

Among 67 289 possible Lyme disease events in the cohort, 13 494 (20.1%) met our Lyme disease case definition. Cases were more common among males, children 5-9 years, older adults, White non-Hispanic persons, and in the summer months. EHR-based Lyme disease incidence was 4-8 times that reported through surveillance. The EHR definition had moderately high sensitivity (83.4%) and specificity (71.1%) for confirmed and probable Lyme disease.

CONCLUSIONS

EHR queries show promise to capture the incidence of Lyme disease more completely and provide more robust clinical information than public health surveillance. Demographic and seasonal characteristics of EHR-identified cases were comparable to those identified through surveillance. Further algorithm refinement might improve accuracy of measuring Lyme disease in EHR systems.

摘要

背景

莱姆病是美国最常见的媒介传播疾病;然而,通过监测无法可靠地测定其发病频率。电子健康记录(EHR)可能更准确地捕捉莱姆病病例的发病频率和特征。我们查询了一个医疗系统的EHR,以描述2016 - 2019年威斯康星州莱姆病病例的流行病学情况。

方法

在一组接受莱姆病评估的人群中,我们根据莱姆病诊断代码或检测医嘱后14天内或与临床记录中相关关键词同一天使用一线抗生素的情况,应用莱姆病病例定义。我们将病例特征与通过监测报告的病例特征进行比较,并查阅病历以评估病例定义的有效性。

结果

在该队列中67289例可能的莱姆病事件中,13494例(20.1%)符合我们的莱姆病病例定义。病例在男性、5 - 9岁儿童、老年人、非西班牙裔白人以及夏季更为常见。基于EHR的莱姆病发病率是通过监测报告发病率的4 - 8倍。EHR定义对确诊和可能的莱姆病具有中等偏高的敏感性(83.4%)和特异性(71.1%)。

结论

EHR查询有望更全面地捕捉莱姆病发病率,并提供比公共卫生监测更丰富的临床信息。EHR识别出的病例的人口统计学和季节特征与通过监测识别出的特征相当。进一步优化算法可能会提高EHR系统中莱姆病测量的准确性。

相似文献

3
Surveillance for Lyme Disease - United States, 2008-2015.2008 - 2015年美国莱姆病监测
MMWR Surveill Summ. 2017 Nov 10;66(22):1-12. doi: 10.15585/mmwr.ss6622a1.

本文引用的文献

4
Diagnostic Testing for Lyme Disease.莱姆病的诊断检测。
Infect Dis Clin North Am. 2022 Sep;36(3):605-620. doi: 10.1016/j.idc.2022.04.001.
5
Epidemiology of Lyme Disease.莱姆病的流行病学。
Infect Dis Clin North Am. 2022 Sep;36(3):495-521. doi: 10.1016/j.idc.2022.03.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验