Suppr超能文献

聚光灯下的媒体放大效应:解读美国二十年风险新闻

Media amplification under the floodlight: Contextualizing 20 years of US risk news.

作者信息

Bryce Cormac, Dowling Michael, Long Suwan Cheng, Wardman Jamie K

机构信息

Bayes Business School, City St George's, University of London, London, UK.

DCU Business School, Dublin City University, Dublin, Ireland.

出版信息

Risk Anal. 2025 Jul;45(7):1940-1956. doi: 10.1111/risa.17701. Epub 2025 Feb 5.

Abstract

This paper addresses the question of identifying and distinguishing risk amplification incidents and patterns in the news media. To meet this objective, our study incorporates a novel "floodlight" approach utilizing the Society for Risk Analysis Glossary in conjunction with topic modeling and time-series analysis, to investigate risk-focused stories within a corpus of 271,854 US news articles over the past two decades. We find that risk amplification in the US news media is concentrated around seven core risk news categories-business, domestic affairs, entertainment, environment, geopolitics, health, and technology-which also vary in the risk-related terms that they predominantly employ. We also identify 14 signal events that can be distinguished relative to general risk news within their categories. Across these events, the "War on Terror" and COVID-19 are seen to display uniquely dynamic media reporting patterns, including a systemic influence between risk news categories and the attenuation of other risk news. We discuss possible explanations for these findings along with their wider research and policy implications.

摘要

本文探讨了在新闻媒体中识别和区分风险放大事件及模式的问题。为实现这一目标,我们的研究采用了一种新颖的“泛光灯”方法,结合风险分析协会术语表、主题建模和时间序列分析,对过去二十年里271,854篇美国新闻文章语料库中的风险聚焦报道进行调查。我们发现,美国新闻媒体中的风险放大集中在七个核心风险新闻类别——商业、国内事务、娱乐、环境、地缘政治、健康和科技——这些类别在其主要使用的风险相关术语上也有所不同。我们还识别出14个信号事件,这些事件相对于其类别中的一般风险新闻而言具有可区分性。在这些事件中,“反恐战争”和新冠疫情呈现出独特的动态媒体报道模式,包括风险新闻类别之间的系统性影响以及其他风险新闻的衰减。我们讨论了这些发现的可能解释及其更广泛的研究和政策意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b201/12396942/a1d9fd2c241c/RISA-45-1940-g002.jpg

本文引用的文献

1
Comparative Risk: Dread and Unknown Characteristics of the COVID-19 Pandemic Versus COVID-19 Vaccines.
Risk Anal. 2022 Oct;42(10):2214-2230. doi: 10.1111/risa.13852. Epub 2021 Nov 17.
2
Risk Attenuation and Amplification in the U.S. Opioid Crisis.
Risk Anal. 2022 Jul;42(7):1393-1408. doi: 10.1111/risa.13840. Epub 2021 Oct 23.
3
Prediction of COVID-19 Waves Using Social Media and Google Search: A Case Study of the US and Canada.
Front Public Health. 2021 Apr 16;9:656635. doi: 10.3389/fpubh.2021.656635. eCollection 2021.
4
But They Told Us It Was Safe! Carbon Dioxide Removal, Fracking, and Ripple Effects in Risk Perceptions.
Risk Anal. 2022 Jul;42(7):1472-1487. doi: 10.1111/risa.13717. Epub 2021 Mar 2.
5
Monitoring Misinformation on Twitter During Crisis Events: A Machine Learning Approach.
Risk Anal. 2022 Aug;42(8):1728-1748. doi: 10.1111/risa.13634. Epub 2020 Nov 14.
6
Risk Perception and Risk Analysis in a Hyperpartisan and Virtuously Violent World.
Risk Anal. 2020 Nov;40(S1):2231-2239. doi: 10.1111/risa.13606. Epub 2020 Oct 10.
7
The COVID-19 social media infodemic.
Sci Rep. 2020 Oct 6;10(1):16598. doi: 10.1038/s41598-020-73510-5.
8
Monitoring behavioural insights related to COVID-19.
Lancet. 2020 Apr 18;395(10232):1255-1256. doi: 10.1016/S0140-6736(20)30729-7. Epub 2020 Apr 2.
9
How to fight an infodemic.
Lancet. 2020 Feb 29;395(10225):676. doi: 10.1016/S0140-6736(20)30461-X.
10
Public awareness, news promptness and the measles outbreak in Hong Kong from March to April, 2019.
Infect Dis (Lond). 2020 Apr;52(4):284-290. doi: 10.1080/23744235.2020.1717598. Epub 2020 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验