Suppr超能文献

用于神经形态应用的疏水性门控介孔。

Hydrophobically gated memristive nanopores for neuromorphic applications.

机构信息

Department of Mechanics and Aerospace Engineering, Sapienza University of Rome, Rome, 00184, Italy.

Chemical Biology Department, Groningen Biomolecular Sciences & Biotechnology Institute, Groningen, 9700 CC, The Netherlands.

出版信息

Nat Commun. 2023 Dec 18;14(1):8390. doi: 10.1038/s41467-023-44019-y.

Abstract

Signal transmission in the brain relies on voltage-gated ion channels, which exhibit the electrical behaviour of memristors, resistors with memory. State-of-the-art technologies currently employ semiconductor-based neuromorphic approaches, which have already demonstrated their efficacy in machine learning systems. However, these approaches still cannot match performance achieved by biological neurons in terms of energy efficiency and size. In this study, we utilise molecular dynamics simulations, continuum models, and electrophysiological experiments to propose and realise a bioinspired hydrophobically gated memristive nanopore. Our findings indicate that hydrophobic gating enables memory through an electrowetting mechanism, and we establish simple design rules accordingly. Through the engineering of a biological nanopore, we successfully replicate the characteristic hysteresis cycles of a memristor and construct a synaptic device capable of learning and forgetting. This advancement offers a promising pathway for the realization of nanoscale, cost- and energy-effective, and adaptable bioinspired memristors.

摘要

大脑中的信号传输依赖于电压门控离子通道,它们表现出忆阻器的电学行为,即具有记忆功能的电阻器。目前最先进的技术采用基于半导体的神经形态方法,这些方法已经在机器学习系统中证明了其有效性。然而,就能量效率和尺寸而言,这些方法仍然无法与生物神经元的性能相匹配。在这项研究中,我们利用分子动力学模拟、连续体模型和电生理实验,提出并实现了一种受生物启发的疏水电荷门控忆阻纳米孔。我们的研究结果表明,疏水电荷门控通过电润湿机制实现记忆,并且我们据此建立了简单的设计规则。通过对生物纳米孔的工程设计,我们成功复制了忆阻器的特征滞后循环,并构建了能够学习和遗忘的突触器件。这一进展为实现纳米级、成本效益高、能量效率高和适应性强的受生物启发的忆阻器提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48f9/10728163/8cead66e47d1/41467_2023_44019_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验