Kuo Tsung-Ting, Gabriel Rodney A, Koola Jejo, Schooley Robert T, Ohno-Machado Lucila
Department of Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, Connecticut, United States of America.
Department of Surgery, School of Medicine, Yale University, New Haven, Connecticut, United States of America.
Nat Commun. 2025 Feb 5;16(1):1371. doi: 10.1038/s41467-025-56510-9.
Quality improvement, clinical research, and patient care can be supported by medical predictive analytics. Predictive models can be improved by integrating more patient records from different healthcare centers (horizontal) or integrating parts of information of a patient from different centers (vertical). We introduce Distributed Cross-Learning for Equitable Federated models (D-CLEF), which incorporates horizontally- or vertically-partitioned data without disseminating patient-level records, to protect patients' privacy. We compared D-CLEF with centralized/siloed/federated learning in horizontal or vertical scenarios. Using data of more than 15,000 patients with COVID-19 from five University of California (UC) Health medical centers, surgical data from UC San Diego, and heart disease data from Edinburgh, UK, D-CLEF performed close to the centralized solution, outperforming the siloed ones, and equivalent to the federated learning counterparts, but with increased synchronization time. Here, we show that D-CLEF presents a promising accelerator for healthcare systems to collaborate without submitting their patient data outside their own systems.
医疗预测分析可为质量改进、临床研究和患者护理提供支持。通过整合来自不同医疗中心的更多患者记录(横向)或整合来自不同中心的患者部分信息(纵向),可以改进预测模型。我们引入了用于公平联邦模型的分布式交叉学习(D-CLEF),它在不传播患者级记录的情况下合并水平或垂直分区的数据,以保护患者隐私。我们在水平或垂直场景中将D-CLEF与集中式/孤立式/联邦学习进行了比较。使用来自加利福尼亚大学(UC)五个健康医疗中心的15000多名新冠肺炎患者的数据、加州大学圣地亚哥分校的外科手术数据以及英国爱丁堡的心脏病数据,D-CLEF的表现接近集中式解决方案,优于孤立式解决方案,与联邦学习相当,但同步时间有所增加。在此,我们表明D-CLEF为医疗系统在不将患者数据提交到自身系统之外的情况下进行协作提供了一个有前景的加速器。