Suppr超能文献

分割学习在健康信息学中深度学习模型分布式协同训练中的应用。

Split Learning for Distributed Collaborative Training of Deep Learning Models in Health Informatics.

机构信息

Vanderbilt University, Nashville, TN.

Vanderbilt University Medical Center, Nashville, TN.

出版信息

AMIA Annu Symp Proc. 2024 Jan 11;2023:1047-1056. eCollection 2023.

Abstract

Deep learning continues to rapidly evolve and is now demonstrating remarkable potential for numerous medical prediction tasks. However, realizing deep learning models that generalize across healthcare organizations is challenging. This is due, in part, to the inherent siloed nature of these organizations and patient privacy requirements. To address this problem, we illustrate how split learning can enable collaborative training of deep learning models across disparate and privately maintained health datasets, while keeping the original records and model parameters private. We introduce a new privacy-preserving distributed learning framework that offers a higher level of privacy compared to conventional federated learning. We use several biomedical imaging and electronic health record (EHR) datasets to show that deep learning models trained via split learning can achieve highly similar performance to their centralized and federated counterparts while greatly improving computational efficiency and reducing privacy risks.

摘要

深度学习继续快速发展,现在在许多医学预测任务中展现出了显著的潜力。然而,要实现能够跨医疗保健机构泛化的深度学习模型是具有挑战性的。这在一定程度上是由于这些组织的固有隔离性质和患者隐私要求所致。为了解决这个问题,我们说明了如何通过拆分学习来跨不同的、私人维护的健康数据集进行深度学习模型的协作训练,同时保持原始记录和模型参数的隐私。我们引入了一个新的隐私保护分布式学习框架,与传统的联邦学习相比,它提供了更高水平的隐私保护。我们使用了几个生物医学成像和电子健康记录 (EHR) 数据集来表明,通过拆分学习训练的深度学习模型可以达到与集中式和联邦式模型非常相似的性能,同时大大提高了计算效率并降低了隐私风险。

相似文献

1
2
Decentralised, collaborative, and privacy-preserving machine learning for multi-hospital data.
EBioMedicine. 2024 Mar;101:105006. doi: 10.1016/j.ebiom.2024.105006. Epub 2024 Feb 19.
3
Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach.
J Imaging Inform Med. 2024 Aug;37(4):1488-1504. doi: 10.1007/s10278-024-01035-8. Epub 2024 Feb 29.
4
Federated Learning-Based Secure Electronic Health Record Sharing Scheme in Medical Informatics.
IEEE J Biomed Health Inform. 2023 Feb;27(2):617-624. doi: 10.1109/JBHI.2022.3174823. Epub 2023 Feb 3.
5
FLED-Block: Federated Learning Ensembled Deep Learning Blockchain Model for COVID-19 Prediction.
Front Public Health. 2022 Jun 17;10:892499. doi: 10.3389/fpubh.2022.892499. eCollection 2022.
7
Federated learning for computational pathology on gigapixel whole slide images.
Med Image Anal. 2022 Feb;76:102298. doi: 10.1016/j.media.2021.102298. Epub 2021 Nov 25.
10
Privacy-preserving Speech-based Depression Diagnosis via Federated Learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1371-1374. doi: 10.1109/EMBC48229.2022.9871861.

引用本文的文献

1
Privacy-preserving decentralized learning methods for biomedical applications.
Comput Struct Biotechnol J. 2024 Aug 30;23:3281-3287. doi: 10.1016/j.csbj.2024.08.024. eCollection 2024 Dec.

本文引用的文献

1
MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification.
Sci Data. 2023 Jan 19;10(1):41. doi: 10.1038/s41597-022-01721-8.
4
Predicting next-day discharge via electronic health record access logs.
J Am Med Inform Assoc. 2021 Nov 25;28(12):2670-2680. doi: 10.1093/jamia/ocab211.
5
Federated learning for predicting clinical outcomes in patients with COVID-19.
Nat Med. 2021 Oct;27(10):1735-1743. doi: 10.1038/s41591-021-01506-3. Epub 2021 Sep 15.
6
Problems in the deployment of machine-learned models in health care.
CMAJ. 2021 Sep 7;193(35):E1391-E1394. doi: 10.1503/cmaj.202066. Epub 2021 Aug 30.
7
The future of digital health with federated learning.
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.
8
Deep representation learning of electronic health records to unlock patient stratification at scale.
NPJ Digit Med. 2020 Jul 17;3:96. doi: 10.1038/s41746-020-0301-z. eCollection 2020.
9
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems.
Data Brief. 2020 Apr 8;30:105474. doi: 10.1016/j.dib.2020.105474. eCollection 2020 Jun.
10
Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo Clinic NLP-as-a-service implementation.
NPJ Digit Med. 2019 Dec 17;2:130. doi: 10.1038/s41746-019-0208-8. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验