Suppr超能文献

基于放射组学和混合机器学习的帕金森病亚型的稳健识别。

Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning.

机构信息

Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran; Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada.

Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran.

出版信息

Comput Biol Med. 2021 Feb;129:104142. doi: 10.1016/j.compbiomed.2020.104142. Epub 2020 Nov 25.

Abstract

OBJECTIVES

It is important to subdivide Parkinson's disease (PD) into subtypes, enabling potentially earlier disease recognition and tailored treatment strategies. We aimed to identify reproducible PD subtypes robust to variations in the number of patients and features.

METHODS

We applied multiple feature-reduction and cluster-analysis methods to cross-sectional and timeless data, extracted from longitudinal datasets (years 0, 1, 2 & 4; Parkinson's Progressive Marker Initiative; 885 PD/163 healthy-control visits; 35 datasets with combinations of non-imaging, conventional-imaging, and radiomics features from DAT-SPECT images). Hybrid machine-learning systems were constructed invoking 16 feature-reduction algorithms, 8 clustering algorithms, and 16 classifiers (C-index clustering evaluation used on each trajectory). We subsequently performed: i) identification of optimal subtypes, ii) multiple independent tests to assess reproducibility, iii) further confirmation by a statistical approach, iv) test of reproducibility to the size of the samples.

RESULTS

When using no radiomics features, the clusters were not robust to variations in features, whereas, utilizing radiomics information enabled consistent generation of clusters through ensemble analysis of trajectories. We arrived at 3 distinct subtypes, confirmed using the training and testing process of k-means, as well as Hotelling's T2 test. The 3 identified PD subtypes were 1) mild; 2) intermediate; and 3) severe, especially in terms of dopaminergic deficit (imaging), with some escalating motor and non-motor manifestations.

CONCLUSION

Appropriate hybrid systems and independent statistical tests enable robust identification of 3 distinct PD subtypes. This was assisted by utilizing radiomics features from SPECT images (segmented using MRI). The PD subtypes provided were robust to the number of the subjects, and features.

摘要

目的

将帕金森病(PD)细分为亚型非常重要,这可以使疾病更早被识别,并制定更有针对性的治疗策略。我们旨在确定对患者数量和特征变化具有稳健性的可重现 PD 亚型。

方法

我们应用了多种特征降维和聚类分析方法,对来自纵向数据集(0 年、1 年、2 年和 4 年;帕金森进展标志物倡议;885 例 PD/163 例健康对照就诊;35 个数据集,包含来自 DAT-SPECT 图像的非成像、常规成像和放射组学特征的组合)的横断面和无时间数据进行了分析。构建了混合机器学习系统,调用了 16 种特征降维算法、8 种聚类算法和 16 种分类器(在每个轨迹上使用 C 指数聚类评估)。随后进行了:i)确定最佳亚型,ii)多次独立测试以评估可重复性,iii)通过统计方法进一步确认,iv)对样本大小进行可重复性测试。

结果

当不使用放射组学特征时,聚类对特征的变化不稳定,而利用放射组学信息可以通过对轨迹的综合分析一致地生成聚类。我们得到了 3 个不同的亚型,通过 k-均值的训练和测试过程以及 Hotelling's T2 检验得到了验证。确定的 3 种 PD 亚型为 1)轻度;2)中度;3)重度,特别是在多巴胺能缺陷(成像)方面,伴有一些进行性运动和非运动表现。

结论

适当的混合系统和独立的统计测试可以稳健地识别 3 种不同的 PD 亚型。这得益于从 SPECT 图像(使用 MRI 分割)中利用放射组学特征。PD 亚型对受试者数量和特征具有稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验